
Just-In-Time Data Virtualization:
Lightweight Data Management with ViDa

Manos Karpathiotakis† Ioannis Alagiannis† Thomas Heinis†‡
∗

Miguel Branco†
Anastasia Ailamaki†

†Ecole Polytechnique Fédérale de Lausanne
{firstname.lastname}@epfl.ch

‡Imperial College
t.heinis@imperial.ac.uk

ABSTRACT
As the size of data and its heterogeneity increase, tradi-
tional database system architecture becomes an obstacle to
data analysis. Integrating and ingesting (loading) data into
databases is quickly becoming a bottleneck in face of mas-
sive data as well as increasingly heterogeneous data for-
mats. Still, state-of-the-art approaches typically rely on
copying and transforming data into one (or few) repositories.
Queries, on the other hand, are often ad-hoc and supported
by pre-cooked operators which are not adaptive enough to
optimize access to data. As data formats and queries in-
creasingly vary, there is a need to depart from the current
status quo of static query processing primitives and build
dynamic, fully adaptive architectures.

We build ViDa, a system which reads data in its raw for-
mat and processes queries using adaptive, just-in-time op-
erators. Our key insight is use of virtualization, i.e., ab-
stracting data and manipulating it regardless of its original
format, and dynamic generation of operators. ViDa’s query
engine is generated just-in-time; its caches and its query op-
erators adapt to the current query and the workload, while
also treating raw datasets as its native storage structures.
Finally, ViDa features a language expressive enough to sup-
port heterogeneous data models, and to which existing lan-
guages can be translated. Users therefore have the power to
choose the language best suited for an analysis.

1. INTRODUCTION
Whether in business or in science, the driver of many big

data applications is the need for analyzing vast amounts
of heterogeneous data to develop new insights. Examples
include analyzing medical data to improve diagnosis and
treatment, scrutinizing workflow data to understand and op-
timize business processes, analyzing stock market tickers to
support financial trading, etc. Yet, as different as these ex-
amples are, their core challenges revolve around providing
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unified access to data from heterogeneous sources, which re-
mains a formidable challenge today.

State-of-the-art approaches have relied on data integra-
tion technologies to place all data, originally stored in het-
erogeneous file formats located at different sources, in one
data warehouse. In this process, semantic integration ap-
proaches [20] help to map semantically equivalent data from
different data sources on a common schema. Physical in-
tegration, on the other hand, is commonly addressed by
first transforming all heterogeneous data into a common for-
mat and then copying and integrating it into a data ware-
house. Transforming and integrating all data into a ware-
house, however, is no longer an option for a growing num-
ber of applications. For example, in many scenarios insti-
tutions owning the data want to retain full control for le-
gal or ethical reasons. Transforming and loading the data
into a warehouse is a considerable time investment that is
unlikely to pay off as not all data may be accessed, while
it bears the risk of vendor lock-in. Statically transforming
all data into one common format may even impede query
execution, as different query classes require data to be or-
ganized into different layouts for efficient query processing.
Finally, for applications facing high update rates, preserving
data freshness requires a continuous synchronization effort
to propagate updates on the original data sources to the
data warehouse in a timely manner.

A change of paradigm is required for data analysis pro-
cesses to leverage the amounts of diverse data available.
Database systems must become dynamic entities whose con-
struction is lightweight and fully adaptable to the datasets
and the queries. Data virtualization, i.e, abstracting data
out of its form and manipulating it regardless of the way
it is stored or structured, is a promising step in the right
direction. To offer unconditional data virtualization, how-
ever, a database system must abolish static decisions like
pre-loading data and using “pre-cooked” query operators.
This dynamic nature must also be extended to users, who
must be able to express data analysis processes in a query
language of their choice.

1.1 Motivating Applications
One of the key visions and driver of the Human Brain

project (HBP [37]) is to improve diagnosis and treatment of
brain related diseases. Defining sound disease characteriza-
tions of brain diseases shared by patients is a necessary first
step and requires a representative and large enough sam-
ple of patients. Researchers in the HBP consequently must
access and analyze data from hospitals across Europe. En-
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abling access to heterogeneous data at different hospitals,
however, is a massive integration challenge.

Integrating all patient data into one warehouse, i.e., trans-
forming it physically and semantically into the same repre-
sentation and moving it into one administrative location,
seems to be the most straightforward approach to enable
its analysis. Nevertheless, given the heterogeneous data for-
mats (results from various instruments or processing pipelines
are stored as JSON, CSV, medical image formats containing
arrays, etc.), the frequent updates to medical records and the
different analysis queries from aggregates to graph queries,
importing all data into a warehouse is impractical. More im-
portantly, national legislation and institutional ethics guide-
lines make any approach where patient data is moved, copied
or transformed impossible. Instead, data must remain at
the hospitals. In a nutshell, the major data management
challenge lies in optimizing the physical integration of data
stored in heterogeneous formats to efficiently support het-
erogeneous queries.

Similar challenges are met in other applications as well.
Banks, for example, operate large numbers of databases and
data processing frameworks. A single data access layer man-
aged by different functional domains (e.g., Trading, Risk,
Settlement) is needed, but none is available. Existing in-
tegration systems are impractical to use at this scale, and
regulations also require banks to keep raw data and corre-
late it directly with the trade life cycle. Accessing all data
in its raw form, on the other hand, allows different func-
tional domains in banks to easily interface with the data
from others without having to share a common system, and
independently of data models or formats. This form of “ad
hoc” data integration allows different communities to create
separate databases, each reflecting a different view/area of
interest over the same data.

1.2 The ViDa Approach
To address the challenges of the aforementioned use cases

as well as many other examples stemming from today’s and
future applications, we clearly have to move beyond the state
of the art. Data management must become a lightweight,
flexible service, instead of a monolithic software centering
around the status quo of static operators and growing obese
under the weight of new requirements. This paper describes
ViDa, a novel data management paradigm offering just-in-
time data virtualization capabilities over raw data sources.

ViDa envisions transforming databases into “virtual” in-
stances of the raw data, with users spawning new instances
as needed where they can access, manipulate and exchange
data independently of its physical location, representation or
resources used. Performance optimizations are transparent,
entirely query-driven and performed autonomously during
query execution. Constant changes to a database, including
schema changes, are not only supported but encouraged so
that users can better calibrate their “view” over the under-
lying data to their needs. Data analysts build databases by
launching queries, instead of building databases to launch
queries. The database system becomes naturally suited for
data integration. Figure 1 depicts a business intelligence ar-
chitecture based on data virtualization. A transparent vir-
tualization layer encompasses all data and enables efficient
data access. Data processing frameworks use the virtualiza-
tion layer to provide fast end-user services and seamlessly
share data access optimizations.
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Figure 1: A Business Intelligence Architecture based on data
virtualization.

Working towards this vision, ViDa leverages efforts to
abolish the static nature of DBMSs. To efficiently sup-
port diverse data models like tables, hierarchies and arrays,
ViDa employs code generation [4, 31, 41] to adapt its en-
gine’s operators and internal data layout to the models of
the data to be processed. In addition, ViDa operates over
raw datasets to avoid data loading. To also avoid undue
performance penalties related to raw data accesses [3, 28],
it generates access paths aggressively optimized [31] for the
formats data is stored in. Finally, we develop a query lan-
guage for ViDa that enables formulating queries over data
organized in heterogeneous models and is expressive enough
for popular query languages to be translated to it. ViDa thus
decouples language from data layout, and enables users to
use their language of preference.

As a proof of concept, we use a preliminary prototype of
ViDa to run a workload from the Human Brain Project, and
show that data virtualization using ViDa is a viable option
for data analysis.

Paper organization. The remainder of this paper is struc-
tured as follows. We outline the architecture of ViDa in
Section 2. Section 3 presents the query language that ViDa
uses. In Section 4 we present the just-in-time query execu-
tor of ViDa. Section 5 discusses optimization opportunities,
and in Section 6 we confirm the design decisions with a set
of experiments. Section 7 discusses the next steps in our ef-
fort towards data virtualization. Finally, Section 8 discusses
related work, before we conclude in Section 9.

2. BUILDING DATABASES JUST IN TIME
Key to ViDa is that data is left in its raw form and acts as

the major “golden data repository”. By doing so, we do not
need to make static decisions about data organization, rep-
resentation and optimization through building a database,
but instead can defer decisions to runtime when data, and
more importantly, the queries are known. Analysis of data
in disparate sources thus begins with ad hoc querying and
not by building a database, or put differently, data analysts
build databases just-in-time by launching queries as opposed
to building databases to launch queries.



To implement this vision, we need to define and implement
i) an internal data representation to describe heterogeneous
raw datasets, and a query language expressive enough to
combine heterogeneous data sources and able to be trans-
lated into popular query languages, ii) a query processor that
creates its operators just-in-time based on the query require-
ments and the underlying datasets, and iii) an optimizer
which considers ViDa’s code generation abilities and takes
into account that ViDa natively operates over raw data.

Representing and querying raw data. Data sources
are typically stored in various formats (e.g., CSV, XML,
JSON, existing DBMS), each potentially based on a differ-
ent data model. ViDa therefore provides a grammar to con-
cisely describe heterogeneous datasets, and a query language
which is general enough to cope with the data model hetero-
geneity and which supports arbitrary data transformations.
Crucially, ViDa’s query language is generic enough for other
query languages to be translated to it, thus enabling data
analysts to use the best suited query language (e.g., SQL,
XQuery) for their data analysis. Depending on the query
and the language used, ViDa internally uses different repre-
sentations of the data. For example, computing the result
of an aggregation function (e.g., max) can be naturally ex-
pressed in SQL, and thus benefits from a tabular represen-
tation of the data. On the contrary, a graph representation
makes computing the shortest path between two nodes a
natural operation.

A just-in-time query executor. Classical DBMS are
highly optimized, but their monolithic query engines achieve
efficiency at the expense of flexibility. On the contrary, ViDa
aims at preserving flexibility on the supported formats while
also ensuring efficient query processing regardless of the in-
put format. ViDa achieves this by adapting to the queries
and to the underlying raw datasets. The query executor
of ViDa applies code generation techniques to dynamically
craft its internal operators and its access paths (i.e., its scan
operators) at runtime. These operators provide efficient ac-
cess to external data by generating optimized access and
processing methods for different data formats and models.

Optimization for raw data querying. Classical query
optimizers do not capture the universe of decisions that are
available to queries asked over a wide variety of raw het-
erogeneous datasets. For example, textual tabular files re-
quire different handling than relational tables that contain
the same information. The dynamic nature of ViDa is also
an enabler for novel optimizations, each of them potentially
targeting specific categories of raw data formats. ViDa thus
features an optimizer which takes into account that queries
are executed on raw data, and which is aware that ViDa’s
code generation capabilities enable proposing query plans
very specific to queries.

2.1 ViDa Architecture
Figure 2 illustrates a high-level description of ViDa. In-

coming queries are translated to the internal “wrapping”
query language, or expressed directly in it to enable accesses
across data models. The entire query execution phase is
monitored by ViDa’s optimizer, which extends classical op-
timizers with runtime decisions related to raw data accesses.
The optimizer is responsible for performing the query rewrit-
ing and the conversion of a logical to a physical query plan.
In the physical query plan, the various abstraction layers
of the database engine collapse into highly efficient machine
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Figure 2: The architectural components of ViDa.

code for the current query. Each dataset’s description is
used to adapt the generated code to the underlying formats
and schemas. The “capabilities” exposed by each underlying
data source dictate the efficiency of the generated code. For
example, in the case that ViDa treats a conventional DBMS
as a data source, ViDa’s access paths can utilize existing
indexes to speed-up queries to this data source.

When applicable, as when handling CSV and JSON files,
the generated operators of ViDa use auxiliary data struc-
tures specifically designed to reduce raw data access costs [3]
(e.g., parsing). ViDa also maintains caches of previously ac-
cessed data. As ViDa targets analytical scenarios, the work-
loads we deal with are typically read-only or append-like
(i.e., more data files are exposed), therefore maintenance
or extension of ViDa’s data structures is straightforward.
ViDa currently handles the cases of in-place updates trans-
parently. Updates to the underlying files result in dropping
the auxiliary structures affected.

The following sections present how ViDa enables query-
ing a wide spectrum of raw data via an expressive query
language, a query engine that is generated just-in-time in
its entirety, and an optimizer defining the appropriate en-
gine structure.

3. MULTIPLE MODELS, ONE LANGUAGE
To execute queries on structured raw datasets, ViDa re-

quires an elementary description of each data format. The
equivalent concept in a DBMS is a catalog containing the
schema of each table. ViDa feeds this information to the
query engine, so that it generates the access paths at run-
time to read each data source. ViDa also requires an expres-
sive query language to support the underlying heterogeneous
data models, which can also be translated into the user’s pre-
ferred language for data analysis. This section discusses the
raw data descriptions and the query language we develop.

3.1 Raw Data Descriptions
Data files follow a variety of formats. Typical examples

are CSV, XML, JSON, but there is also a variety of ad hoc
and of domain-specific formats; ROOT [7] for high-energy
physics, FITS [49] for astronomy, etc. While each format’s
specifics vary widely (e.g., character encoding, headers, con-



ventions, etc.), most formats follow a defined underlying
structure. CSV files represent tables or vertical/horizontal
partitions of tables. FITS files contain tables in either ASCII
or binary encoding, in addition to arrays. XML and JSON
files contain semi-structured data. In the context of ViDa,
we identify widely-used data formats and define a minimal
grammar that is sufficiently rich to describe the structure
of the raw data to the upper layers of the query engine.
To support arbitrary data formats with unknown a priori
schemas, we design ViDa flexible enough to support addi-
tional formats if their description can be obtained through
schema learning tools [56].

ViDa uses data source descriptions that capture i) the
schema of each raw dataset, ii) the “unit” of data retrieved
using the data access interface for each dataset format, and
iii) the access paths exposed for each dataset format. This
information is required to validate user queries, but also to
be fed to the query engine so that it adapts to each under-
lying dataset instance.

Suppose a file contains data modeled as a matrix. Array
data is common in formats such as ROOT and NetCDF. A
simplified description of the file’s schema could be:

Array(Dim( i , i n t ) , Dim( j , i n t ) , Att ( va l ) )
va l = Record( Att ( e l eva t i on , f l o a t ) ,

Att ( temperature , f l o a t ) )

If we rely on a straightforward parser to access our ex-
ample array file, the “unit” read with each data access will
probably be a single element - an (elevation,temperature)
pair. If, however, a more sophisticated parser is available,
or if the data format in question is accompanied by an ex-
tensive data access framework (as is the case with scientific
data formats such as HDF5), alternative “units” of data can
be i) a row of the matrix, ii) a column of the matrix, or even
iii) a n×m chunk of the matrix (as is also more common in
array databases [5, 47]). In a database system, this datum
is usually a page with tuples (for a row-store), or a piece of a
column (for a column-store). For other data formats, other
“units” are possible, such as objects in the case of JSON.
Finally, the access paths exposed by a file include, among
others, sequential scans, index-based accesses, and accesses
based on an identifier (e.g., a rowId).

3.2 A Query Language for Raw Data
Queries targeting raw data must consider the unavoidable

model heterogeneity, and enable the combination of informa-
tion from diverse data sources. The language used must also
enable users to“virtualize” the original data, i.e., apply pow-
erful transformations over the output of a query. ViDa uses
a query language that provides support for a multitude of
data models. Specifically, collection types such as sets, bags,
lists, and multi-dimensional arrays are supported. This flex-
ibility enables queries to transparently access a great variety
of datasets (e.g., relational tables, CSV and JSON files, ar-
ray image data, etc.).

Existing work in the area of raw data querying focuses on
providing support for a single data model [3, 6], or maps
non-conforming datasets to the relational model [31]. As
ViDa aims for native support of non-relational data sources,
however, the relational calculus is not sufficient as a base for
its query language. ViDa therefore uses the monoid compre-
hension calculus, detailed in [22, 23].

Monoid comprehension calculus. A monoid is an
algebraic construct term stemming from category theory.

NULL null value

c constant

υ variable

e.A record projection

〈A1 = e1, ..., An = en〉 record construction

if e1 then e2 else e3 if-then-else statement

e1 op e2 op: primitive binary function
(e.g., <,+)

λυ : τ.e function abstraction

e1(e2) function application

Z⊕ zero element

U⊕(e) singleton construction

e1 ⊕ e2 merging

⊕{e|q1, ..., qn} comprehension

Table 1: The monoid comprehension calculus

A monoid of type T comprises an associative binary op-
eration ⊕ and a zero element Z⊕. The binary operation,
called merge function, indicates how two objects of type T
can be combined. The zero element Z⊕ is the left and right
identity of the merge function ⊕; for every object x of type
T, the equivalence Z⊕ ⊕ x = x⊕Z⊕ = x is satisfied.

Monoids can be used to capture operations between both
primitive and collection data types. The latter also require
the definition of a unit function U⊕, which is used to con-
struct singleton values of a collection type (e.g., a list of one
element). For example, (+, 0) represents the primitive sum
monoid for integer numbers. The pair (∪, {}) along with the
unit function x � {x} represent the set collection monoid.

The monoid comprehension calculus is used to describe
operations between monoids. A monoid comprehension is
an expression of the form ⊕{e|q1, ..., qn}. The terms qi are
called qualifiers. Each qualifier can either be

• a generator, taking the form v � e′, where e′ is an ex-
pression producing a collection, and v is a variable that is
sequentially bound to each value of said collection.

• a filter predicate.

The expression e is called the head of the comprehension,
and is evaluated for each value binding produced by the
generators. The evaluation results are combined using the
merge function ⊕, called the accumulator of the comprehen-
sion in this context. Table 1, originally from [23], contains
the syntactic forms of the monoid comprehension calculus.

The comprehension syntax that ViDa uses is slightly al-
tered but equivalent to the one presented, and resembles
the sequence comprehensions of Scala. The syntax we use
is for{q1, ..., qn} yield⊕ e. As an example, suppose that we
want to pose the following SQL query counting a depart-
ment’s employees:

SELECT COUNT(e.id)
FROM Employees e JOIN Departments d ON (e.deptNo = d.id)
WHERE d.deptName = "HR"

The same aggregate query can be expressed in our version
of monoid comprehension syntax as:

for { e <- Employees, d <- Departments,
e.deptNo = d.id, d.deptName = "HR"} yield sum 1

This example requires us to use the sum monoid for inte-
gers to perform the count required. Other primitive monoids



we can use in our queries include, among others, max, aver-
age, and median. Similarly, queries with universal or exis-
tential quantifiers can use the ∨ and ∧ monoids for boolean
types. More complex monoids include the ordering monoid,
the top-k monoid, etc.

Monoid comprehensions also support nested expressions.
A query requesting an employee’s name along with a collec-
tion of all the departments this employee is associated with
is expressed as:

for { e <- Employees, d <- Departments, e.deptNo = d.id}
yield set (emp := e.name,

depList := for {d2 <- Departments,d.id = d2.id}
yield set d2)

Expressive Power. Monoid comprehensions bear simi-
larities to list and monad comprehensions [9, 53], which are
constructs popular in functional programming languages.
We opt for monoid comprehensions as a “wrapping” layer
for a variety of languages because they allow inputs of dif-
ferent types (e.g., sets and arrays) to be used in the same
query. Query results can also be “virtualized” to the layout/
collection type requested; different applications may require
different representations for the same results. Examples in-
clude, among others, representing the same original data
either as a matrix or by using a relational-like tabular rep-
resentation, and exporting results as bag collections while
the original inputs are lists. This capability aids in “virtu-
alizing” the original data as per the user’s needs.

Crucially, ViDa’s language based on monoid comprehen-
sions lends itself perfectly to translation to other languages.
Support for a variety of query languages can be provided
through a “syntactic sugar” translation layer, which maps
queries written in the original language to the internal nota-
tion. Doing so enables users to formulate queries in their
language of choice. Specifically, monoid comprehensions
are the theoretical model behind XQuery’s FLWOR expres-
sions, and also an intermediate form for the translation of
OQL [23]. The monoid comprehension calculus is also suf-
ficient to express relational SQL queries. SPARQL queries
over data representing graphs can also be mapped to the
monoid comprehensions calculus [13].

The prototype version of ViDa presented here uses com-
prehensions as its query interface; the syntactic sugar trans-
lation layers are ongoing work. During query translation,
ViDa translates the monoid calculus to an intermediate al-
gebraic representation [23], which is more amenable to tra-
ditional optimization techniques. ViDa’s executor and opti-
mizer operate over this algebraic form.

ViDa is the first approach applying monoid comprehen-
sions to enable virtualization of raw heterogeneous datasets,
and coupling such an expressive calculus with the appli-
cation of code generation techniques in all steps of query
evaluation to achieve our vision of just-in-time databases.
Generating a query engine just-in-time is connected to the
inherent complexity of evaluating queries formulated in such
an expressive language and to the large universe of decisions
related to accessing raw data.

4. DATABASE AS A QUERY
ViDa is designed on the premise that a database must be

a dynamic entity whose construction is lightweight and fully
adaptable to the queries and the underlying data instances,
rather than the end product built by a laborious process

and then exploited for answers. The query engine of ViDa
therefore employs code generation techniques to produce at
runtime code specific for each incoming query and for each
underlying raw dataset accessed. The rest of the section
elaborates on the challenges that static designs face, before
contrasting them with the just-in-time executor of ViDa.

Adapting an engine to underlying data. Traditional
database engines are designed to handle hard-coded data
structures. In a row-store, this structure is the database
“page”; in a column-store, it is typically a tightly-packed
array of data containing a single column of a table. Both
these variations, however, presuppose that data has been
transformed to the appropriate binary format, and then
loaded into a database. Reformatting a user’s raw data into
new structures managed by the database engine and loading
it is a costly process [31]. Statically defining these struc-
tures is also not beneficial, because given the variety in data
models and formats that ViDa combines, different queries
may benefit from a different choice of data structure lay-
out. Even when dealing with strictly relational data, query
performance improves if the layout is able to adapt to the
workload needs [4]. Considering the diverse and arbitrary
nature of workloads that can be executed over a collection
of heterogeneous datasets, from simple SQL aggregations to
combinations of JSON with array data, it becomes appar-
ent that the static decisions inherent to traditional database
systems must be replaced with dynamic ones.

An engine with fine-grained operators. The eval-
uation process for a random query mapped to the monoid
comprehension syntax, as detailed in [23], introduces over-
heads if executed in a static manner. An incoming query
to be evaluated is initially translated to comprehension syn-
tax. After applying a series of rewrite rules to optimize the
query (e.g., remove intermediate variables, simplify boolean
expressions, etc.) the partially optimized query is translated
to a form of nested relational algebra which is much closer to
an execution plan, and over which an additional number of
rewritings can be applied (e.g., unnesting sub-queries that
could not be unnested while in comprehension syntax).

Operators of this form, however, are much more complex
than their relational counterparts. For example, our algebra
includes the reduce operator, which is is a generalization of
the straightforward relational projection operator. Besides
projecting a candidate result, it optionally evaluates a bi-
nary predicate over it. The operator’s behavior also changes
depending on the type of collection to be returned (e.g., no
duplicate elimination is required if the result type is a bag).
Static implementations of such operators have to be very
generic to handle all their functionality requirements.

Another concern is that in ViDa the layout of in-memory
data structures may vary (e.g., different layouts may be used
for data stored in a different - or even the same - file type
if it benefits execution). Finally, even if the intermediate
results fed to the operator are tabular, the user may have
requested the output transformed as an arbitrarily nested
object. A “pre-cooked” operator offering all these capabili-
ties must be very generic, thus introducing significant inter-
pretation overhead [41].

4.1 Just-in-time Operators
ViDa generates its internal structures and query opera-

tors on demand, to better suit the workload needs. Deci-
sions concerning query execution and operator structure are
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postponed until runtime, when as much useful information
for the query invocation as possible has been gathered. ViDa
generates its query operators just-in-time, and is thus able
to flush out optimal, special-purpose operators satisfying the
needs of the currently processed query. A typical ViDa op-
erator, depicted in Figure 3, is created in three steps.

Input Plugins. As its first step, the operator needs to
process its inputs, which it obtains either by directly scan-
ning a raw file (if it is a scan operator) or by having a pre-
vious operator pipeline its output to the current one. All
ViDa operators can accept input expressed in a variety of
data models and formats. Every operator invokes a file-
format-specific input plugin for each of its input bindings to
be able to process them. Multiple bindings may utilize the
same plugin; for example, two bindings may originate from
CSV files, so a CSV plugin is used for both.

The more domain-specific knowledge we have for a raw
dataset format to be accessed by ViDa and the queries to
be run over it, the more efficient its corresponding plugin
is. For example, an organization may use as logs JSON files
that do not contain arrays. ViDa can use a specialized JSON
plugin for these files, reducing CPU overheads, and a general
plugin for generic JSON files.

Input plugins also use auxiliary structures to speed-up
accesses to raw data files. For textual data formats (CSV
and JSON), auxiliary structures which index the structure
of raw data [3, 43] are used to support efficient navigation
in the text files and reduce the parsing costs incurred to
identify fields of interest. Other file formats (e.g., HDF [50])
contain indexes over their contents; these indexes can also
be used by the scan operators of ViDa to speed-up accesses.

Operator Logic. By calling the appropriate plugin for
the data instance in question, custom code is generated to
read a “datum” of the input datasets (e.g., a JSON object,
or even a pre-materialized tuple in a binary format). Once
the generated code places the necessary data elements in
ViDa’s data caches (or ViDa confirms that the data ele-
ments are already in its caches), the code corresponding to
the exact operator logic for this query instance is gener-
ated. Before launching query execution, the optimizer of
ViDa has taken into account combinations of data already
cached, potentially in different layouts (e.g., chunks of an
array against a column from a relational-like CSV table),
to decide on the operator design to generate. The code
that is generated depends on the data layout to be used
for this operator invocation. The generated code is also
stripped from general-purpose checks that introduce over-
heads (e.g., branches whose outcome is known at runtime,
such as datatype checks).

In the general case, the operators of ViDa attempt to
pipeline data when possible. Pipelined execution, combined
with the fact that the query executor generates low-level ma-
chine code, enables ViDa to effectively operate directly over
raw data. The access paths of ViDa (i.e., the scan opera-
tors) do not materialize any intermediate data structures at
an early stage; no “database page” or “data column” has to
be built to answer a query. Instead, data bindings retrieved
from each “tuple” of a raw file are placed in CPU registers
and are kept there for the majority of a query’s processing
steps [41]. Of course, some implementations of operators
such as joins typically are materializing, but data structure
creation costs are still reduced.

In certain scenarios, such as when ViDa incurs I/O (or
predicts that it will), we use more conservative strategies:
The scan operators of ViDa eagerly populate data struc-
tures, especially if part of the data structure population cost
can be hidden by the I/O cost of the initial accesses to the
raw data files; pipelined execution is then used for the rest
of the query tree.

Operator Output. If an operator has to explicitly ma-
terialize part of its output (e.g., relational joins and ag-
gregations are blocking operators, and typically populate
a hashtable internally), an output plugin is called to gener-
ate the code materializing the data in an appropriate layout
and format. The output format depends on various factors,
including: i) the compactness of the format (e.g., binary
JSON serializations are more compact than JSON), ii) the
requested output format of the data to be projected as the
last step of the query (e.g., the user may require the output
in CSV), and iii) potential locality in the workload (e.g.,
intermediate results of the current query can be reused by
future queries). Section 5 presents additional information
on these decisions.

5. OPTIMIZATION FOR JIT DATABASES
Applying traditional optimization techniques to ViDa is

essential to exploit the decades of research in query opti-
mization for database engines. Accessing raw data, how-
ever, introduces trade-offs, both implicit and explicit, that
ViDa must take into account during the query optimization
process. This section discusses the challenges related to ap-
plying traditional optimization approaches to ViDa. ViDa’s
dynamic nature also enables making, and potentially cor-
recting, optimization decisions just-in-time and we thus dis-
cuss new opportunities for optimization as well.

Optimizing Just-in-time. When considering optimiza-
tion decisions, ViDa differs from a traditional database sys-
tem, mostly because of its capability to generate ad hoc
operators. To reduce the cost of raw data accesses, ViDa
considers information such as i) the incoming query needs
(e.g., output format, projectivity, etc.), ii) the schema of the
underlying raw data, iii) the auxiliary structures that have
been built for the raw data, and iv) the format and layout of
data currently in caches. Besides the standard optimization
phase that is similar to that of classical optimizers, ViDa has
to make fine-grained decisions which affect each operator’s
generation. For example, it is up to the optimizer to decide
what data layout each query operator should use during the
evaluation of an incoming query. The optimizer of ViDa
makes some of these decisions statically, using heuristics and
statistics that have been gathered. The desired behavior of
some operators, however, may be specified just-in-time, so



it is non-trivial to fully model the entire execution statically.
Therefore, at runtime ViDa both makes some decisions and
may change some of the initial ones based on feedback it
receives during query execution [17]. In this case, ViDa gen-
erates the code for a new instance of its engine on the fly
based on the modified query plan.

Perils of Classical Optimization on Raw Data. Tra-
ditionally, operators that read data from a relation which
resides in the buffer pool of a DBMS have to “project” the
attributes of interest to the query. The CPU cost per at-
tribute fetched is on average the same. For operators ac-
cessing raw data, however, the cost per attribute fetched
may vary between attributes due to the effort needed to
navigate in the file. For instance, for CSV files, reading new
attributes requires tokenization, parsing, and conversion of
data. Therefore, the CPU costs are generally higher and
more varied than in a traditional system, where reading a
“tuple” (or a subset of it) from the buffer pool is a constant
factor for each scan operator. The more complex the format,
the more expensive this process usually is.

Unfortunately, there is no single formula to model these
access costs. For textual data formats (CSV and JSON),
auxiliary structures which index the structure of the under-
lying raw data have been proposed [3, 43]. For a CSV file,
binary positions of a file’s fields are stored in a positional
index during initial accesses, and are used to facilitate nav-
igation in the file for later queries. The cost per attribute
therefore depends on the attributes already in the positional
index, their distance to the attributes required for the cur-
rent query, the cost of applying the data conversion function,
etc. For other formats, the cost is actually fixed and easy
to model, e.g., a file format that stores sequences of com-
pressed tuples will have a constant time to access each tuple
(i.e., the decompression cost per tuple). To overcome the
complexity stemming from format heterogeneity, ViDa uses
a wrapper per file format, similar to Garlic [45]. When a
query targets a specific file, the optimizer invokes the ap-
propriate wrapper, which takes into account any auxiliary
structures present, and normalizes access costs for the at-
tributes requested. For example, for a CSV file for which no
positional index structures exist, the cost to retrieve a tuple
might be estimated to be 3 × const cost, where const cost
would be the corresponding cost in a DBMS. ViDa’s opti-
mizer uses these estimates to decide the appropriate points
in a query plan to access the raw files.

Avoiding Cache Pollution. To avoid “polluting” its
caches, ViDa decides how eagerly to feed raw data into the
query engine via the access paths. Identifying the attributes
necessary for query evaluation and feeding them into ViDa’s
engine as the first step of answering a query is a straightfor-
ward option. Large, complex objects (e.g., JSON deep hier-
archies) materialized as the result of a projected attribute of
a query, however, will “pollute” ViDa’s caches1. By carrying
only the starting and ending binary positions of large objects
through query evaluation, ViDa can avoid these unnecessary
costs. ViDa retrieves these positions from its positional in-
dexes, and exploits them at the time of result projection to
assemble only the qualifying objects. Still, accessing raw
files more than once during query evaluation may increase
costs; ViDa thus takes into account trade-offs between I/O,
memory and CPU costs. Figure 4 shows different potential

1Eagerly loading scalars alone already increases the creation
cost of data structures significantly [31].
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Figure 4: Potential layouts for a tuple containing a JSON
object. The optimizer decides which one to output.

data layouts for a given query that requires an integer field
and a JSON object for its evaluation.

Re-using and re-shaping results. ViDa can keep copies
of the same information of interest in its caches using dif-
ferent data layouts and use the most suitable layout during
query evaluation of different workloads. As ViDa’s engine
allows for arbitrary operator inputs, it can cache replicas of
tabular, row-oriented data in a columnar format and process
them in a column-oriented manner for some queries. Simi-
larly, ViDa can maintain both object-oriented and flattened
versions of the same hierarchical datasets.

Queries in ViDa can also request the output in a custom
layout, regardless of the original layout of the raw data, fur-
ther affecting optimization decisions. If an application built
on top of ViDa offers a JSON RESTful interface, ViDa ma-
terializes intermediate results as binary JSON to avoid re-
constructing the objects for every query. For business appli-
cations that generate reports, existing intermediate results
in a tabular layout can be served to users as additional re-
ports, so that they may derive more insights from the data.

6. EXPERIMENTAL RESULTS
In this section, we present a preliminary evaluation anal-

ysis of the ViDa prototype in a real-life scenario.
ViDa Prototype. The language layer of ViDa offers the

complete expressive power of monoid comprehensions. It
supports queries over JSON, CSV, XLS, ROOT, and files
containing binary arrays. The just-in-time executor as well
as the optimizer of ViDa are ongoing work. In the following
experiments, we use the prototype of the just-in-time execu-
tor for queries over CSV and JSON that exclusively access
either ViDa’s caches or the underlying data files. For the
rest of the queries in the experiments, which have to access
both the raw files and the caches of ViDa, we use a static
pre-generated executor for which we had implemented more
sophisticated caching mechanisms.

To efficiently navigate through the raw CSV and JSON
files, ViDa uses auxiliary positional indexes, which capture
structural information of the raw data files. For CSV files,
“positional maps” [3] store the byte positions of attributes
in the raw data files. For JSON files, we similarly maintain
positional information such as starting and ending positions
of JSON objects and arrays [43]. ViDa also caches previously
accessed data fields.

The upper layers of ViDa (parser, rewriter, optimizer,
etc.) are written in Scala, which eases the expression of the
optimizer’s rewrite rules. The just-in-time executor is being
written in C++, and uses the LLVM compiler infrastruc-
ture [36] to generate code at runtime. The static executor is
written in GO, exploiting GO’s channels to offer pipelined
execution. The access paths and the auxiliary structures of
ViDa are written in C++.

Experimental Methodology & Setup. We compare
ViDa with two popular approaches for integrating data stored



Relation name Tuples Attributes Size Type

Patients 41718 156 29 MB CSV

Genetics 51858 17832 1.8 GB CSV

BrainRegions 17000 20446 5.3 GB JSON

Table 2: Human Brain Project - Workload characteristics.

in heterogeneous formats, namely i) integrating all files in
one data warehouse and ii) employing different systems to
accommodate files of different formats (e.g., a document-
oriented DBMS for JSON files and an RDBMS for CSV
files). This demonstration aims to highlight the trade-offs
of the different approaches.

We use two state-of-the-art open-source relational database
systems, a column-store (MonetDB) and a row-store (Post-
greSQL), for storing relational data. We use MongoDB for
storing hierarchical data. To integrate files of different for-
mats in one data warehouse, we perform the data trans-
formations into a common format (e.g., normalize/flatten a
JSON file to CSV) and we then load the data in the RDBMS.
When different systems are used, a data integration layer on
top of the existing systems (the RDBMS of choice and Mon-
goDB) is responsible for providing access to the data.

All experiments are conducted in a Sandy Bridge server
with a dual socket Intel(R) Xeon(R) CPU E5-2660 (8 cores
per socket @ 2.20 GHz), equipped with 64 KB L1 cache and
256 KB L2 cache per core, 20 MB L3 cache shared, and 128
GB RAM running Red Hat Enterprise Linux 6.3 (Santiago
- 64bit). The server is equipped with a RAID-0 of 7 250 GB
7500 RPM SATA disks.

Workload and Datasets. For our experiments, we
use a query workload and datasets from a real-life applica-
tion of the Human Brain project (see Section 1.1). We use
as input two relations (Patients and Genetics) describing
tabular data, stored in CSV files, and a hierarchical dataset
(BrainRegions) which is stored in a JSON file. The relation
Patients contains patient-related information (e.g., protein
levels in a blood sample) and the relation Genetics describes
DNA sequence variations (“SNPs”) observed in a patient’s
DNA. Finally, the JSON file BrainRegions comprises a hi-
erarchy of 17000 objects containing results of a processing
algorithm run over an input of Magnetic resonance imaging
(MRI) scans. Table 2 summarizes the workload character-
istics. In the case of PostgreSQL, we vertically partition
the input relations due to the limit on the number of at-
tributes per table (250-1600 depending on attribute types).
The ViDa prototype queries the raw datasets directly.

The input query workload is based on a typical analysis
scenario in the context of medical informatics and features
150 queries. Such scenarios typically involve a sequence of
between 100 and 200 queries for i) epidemiological explo-
ration where datasets are filtered using geographical, demo-
graphic, and age criteria before computing aggregates over
the results to locate areas of interest in the raw datasets, and
ii) interactive analysis where the patient data of interest is
joined with information from imaging file products (i.e., the
JSON dataset). The results of the latter case can be visual-
ized on a brain atlas (as they contain spatial information),
or be used as input to a subsequent statistical analysis algo-
rithm. Most queries access all three datasets, apply a num-
ber of filtering predicates, and project out 1-5 attributes.
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Figure 5: ViDa vs. i) an RDBMS containing flattened data,
and ii) an RDBMS and a document DBMS, under an inte-
gration layer.

A query template describing them is:

for { p <- Patients, g <- Genetics, b <- BrainRegions,
p.id = g.id, g.id = b.id, pred1, ..., predN

} yield bag (attr1 := val1, ..., attrN := valN)

The equivalent SQL query is:

SELECT val1, ..., valN
FROM Patients p JOIN Genetics g ON (p.id = g.id)
JOIN BrainRegions b ON (g.id = b.id)
WHERE pred1 AND ... AND predN

Results. Figure 5 illustrates the cumulative time needed
to prepare (i.e., flattening and data loading) and execute
the sequence of queries with each system. “Col.Store” and
“RowStore” correspond to the “single data warehouse” so-
lution, using a column-store and a row-store respectively.
Similarly, “Col.Store+Mongo” and “RowStore+Mongo” cor-
respond to the case when different systems are used. We
observe that the ViDa prototype achieves the best overall
performance (up to 4.2x faster) and manages to compute the
entire workload while the other approaches are still in the
preparation phase. The preparation phase of the RDBMS-
only solution includes data “flattening”, which is both time
consuming and introduces additional redundancy in the data
stored. When different systems are used, the need for a data
integration layer comes with a performance penalty during
query processing. In addition, although no initial flattening
was required, populating MongoDB was a time- but also a
space-consuming process: the imported JSON data reached
12GB (twice the space of the raw JSON dataset).

The performance of individual queries in ViDa is compa-
rable to that of a fully-loaded DBMS for most of the queries
asked due to locality in the query workload. ViDa served ap-
proximately 80% of the workload using its data caches. For
these queries, the execution time was comparable to that
of the loaded column store in our experiments. For the re-
maining 20% of the query workload, queries had to access
the raw data files, either because the raw files had not been
accessed before, or because some additional fields (that were
not cached by previous accesses) were needed to answer a
query. Although queries that access multiple fields from the
raw files in ViDa are more expensive than their counterparts
running on data loaded in a DBMS, the majority of ViDa’s
cumulative execution time is actually spent in the initial ac-
cesses to the three datasets. This is a cost that both ViDa



and the DBMS-based approaches have to pay. Still, using
faster storage would actually benefit ViDa, as some of the
queries launched over it are I/O-bound, therefore ViDa’s
optimizations are masked by the I/O cost for these queries.
For the other systems in the experiments, the loading and
transformation process is CPU-intensive, therefore it is their
CPU overheads that are partially masked by the initial I/O.

Summary. Our experiments show that the ViDa proto-
type offers performance that is competitive to state-of-the-
art approaches for data analysis of heterogeneous datasets.
ViDa serves a real-life query workload from the Human Brain
Project before the competitive approaches finish data load-
ing and transformation. At the same time, ViDa does not
have to i) copy data, ii) “lock” data in a proprietary format,
or iii) transform data. Data virtualization of heterogeneous
raw data using ViDa is a viable option for the data analysis
in this scenario.

7. DATA VIRTUALIZATION: NEXT STEPS
ViDa is an ongoing effort; we aim to examine numerous

new opportunities enabled by data virtualization, which we
will discuss in this section.

Complex, procedural analytics. Our focus in this
work has been at providing support for a wide range of
declarative queries, targeting a multitude of data formats.
The monoid comprehension calculus, however, provides nu-
merous constructs (e.g., variables, if-then-else clauses, etc.)
that ViDa can already use to express tasks that would typ-
ically be expressed using a procedural language. The over-
all workload of a user can therefore benefit from the op-
timizer of ViDa, which has the potential to optimize tasks
such as complex iterative machine learning in a holistic way;
by translating both the data access and the computational
parts to its intermediate algebra, ViDa can optimize them
as a single procedure, and identify “cross-layer” optimiza-
tion opportunities (similar to the ones in [46]). Procedural
tasks typically involve state manipulation; monoids might
appear as a counter-intuitive way to express such tasks be-
cause they are mostly used in the side-effect-free manner as-
sociated with functional programming. We can model state
manipulation, however, either by introducing a state trans-
formation monoid [21], or by introducing a global context,
as Tupleware [14] does to enable its monadic algebraic op-
erators to handle shared state.

Data Cleaning. Data curation is a significant step in the
data analysis pipeline. In many cases, it becomes a manual,
tedious process. ViDa can exploit its adaptive nature to
reduce the effort required to clean input data sources. A
conservative strategy starts by identifying entries whose in-
gestion triggers errors during the first access to raw data;
then, the code generated for subsequent queries can explic-
itly skip processing of the problematic entries. Another op-
portunity comes from exploiting domain-specific knowledge
for each data source. So far, ViDa has used domain-specific
knowledge to optimize the generated code. Additional infor-
mation about the domain, such as acceptable value ranges,
dictionaries of values [48] (i.e., list of values that are valid
for a given attribute), etc., can be incorporated in an input
plugin that is specialized for that specific source. Then, dif-
ferent policies can be implemented for wrong values detected
during scanning; options include skipping the invalid entry,
or transforming it to the “nearest acceptable value” using a
distance-based metric such as Hamming distance [25].

Integrating new storage technologies. Novel stor-
age technologies are particularly important in data man-
agement because database systems’ components have long
been tuned with the characteristics of magnetic disk drives
in mind. New storage technologies, however, have different
characteristics. Flash, phase change memory (PCM) and
memristor are the future in data center storage, while flash
is currently the de facto storage medium for an increasing
number of applications. ViDa must integrate new storage
technologies carefully in the data virtualization architecture,
considering the trade-off in cost, performance and energy
consumption. We focus on i) new data placement strate-
gies that avoid (slow) random writes on flash by modifying
them into sequential writes, ii) using new storage technolo-
gies as a performance booster for data warehouses that are
stored primarily on HDDs, and iii) offloading data to differ-
ent storage technologies considering the power requirements
and the number of accesses. Overall, our goal is to deter-
mine the most suitable storage device for the various tasks
of raw data processing, such as raw data storage, temporary
structures for query processing, and data caches storage.

Energy Awareness. Databases should use the underly-
ing hardware in a judicious and energy-efficient way. Energy
consumption is increasing significantly and it should be con-
sidered when designing large-scale data analysis frameworks
Emerging hardware architectures require us to develop novel
data structures and algorithms for efficient raw data pro-
cessing. The goal is to develop task- and data-placement
strategies that are simultaneously workload-, hardware- and
data-aware. We must consider CPUs with different capabil-
ities, such as low-energy chips vs server-class hardware, and
devise placement strategies that offload work to the most ad-
equate CPU given the task at hand: for instance, low-energy
CPUs can handle positional structures and caching opera-
tions while others perform heavy-duty query processing or
code generation. Regarding code generation, the code to
be generated must take into account the capabilities of the
platform on which it will be executed. Besides considering
characteristics such as different cache sizes [35], low-energy
CPUs might be more suitable as hosts for lightweight ver-
sions of the code which are not aggressively optimized. Pro-
tocol buffers [1], the serialization framework used by Google,
makes similar distinctions.

8. RELATED WORK
ViDa draws inspiration and utilizes concepts from a wide

range of research areas, from data exploration to functional
programming languages. Influences and related work are
presented in this section.

Data Exploration. As data sizes become larger and
larger, data exploration has become necessary to quickly
gain insight of vast amounts of data. Several researchers
have recognized the challenges accruing from the big data
explosion and the need to re-design traditional DBMS for the
modern application scenarios both in business and sciences
[3, 19, 27, 28, 29, 32, 40]. ViDa shares a similar vision and
extends current approaches to bring together data originally
stored in heterogeneous data stores. ViDa abstracts data
and manipulates it regardless of its original format while
adapting the query engine to the underlying data. By using
virtualization and performing the query processing directly
on raw data files, ViDa can provide novel opportunities for
low-overhead data exploration.



In situ data analytics. Asking queries over raw data is
a very active research area. The “NoDB philosophy” [3] ad-
vocates that in many scenarios database systems can treat
raw data files as first-class citizens and operate directly over
them. Parallel operators for in situ processing, taking into
account system resources (CPU cycles and I/O bandwidth)
were proposed by [12]. Data vaults [30] and the parallel
system SDS/Q [6] ask queries directly over scientific file
formats, emphasizing on array-based data. Multiple sys-
tems adhering to the MapReduce paradigm [16] are used
to perform data analysis on data files stored in HDFS [26].
Systems such as Pig [42] and Hive [51] expose a declara-
tive query language to launch queries, which are then trans-
formed internally to MapReduce jobs. Another variation of
systems operate over HDFS, but their internal query engine
resembles a traditional parallel database [11, 34, 39, 52]. Fi-
nally, “invisible loading” [2] and Polybase [18] follow a hybrid
approach; they use a Hadoop cluster and a DBMS to answer
queries, transferring data between the two when needed.

ViDa adopts the“NoDB philosophy”and extends it by ap-
plying data virtualization to process data originally stored in
heterogeneous data file formats. The ideas we describe can
also be applied in the domain of “SQL-on-Hadoop” solutions
presented above.

Code generation. The use of just-in-time code gener-
ation to answer database queries has re-gained popularity,
years after its initial application in System R [10]. HIQUE [35]
dynamically instantiates code templates to generate hardware-
specific (e.g., cache-conscious) code. RAW [31] and H2O [4]
use similar code generation mechanisms. RAW generates
its access paths just-in-time to adapt to the underlying data
files and to the incoming queries. H2O dynamically adapts
its data storage layout based on the incoming query work-
load. HyPer [41], Impala [54], and Tupleware [14] employ
more sophisticated code generation techniques, using the
LLVM JIT compiler infrastructure [36]. The query engine
of HyPer is push-based to simplify the control flow in the
generated code and to exploit data locality via pipelining.
Tupleware utilizes code compilation to speed up computa-
tionally intensive machine learning tasks. The JIT compiler
of LLVM also allows for very fast compilation times, mak-
ing query compilation costs almost insignificant. Another
JIT compiler, the one of JVM, has also been used to gen-
erate code for queries [44]. On the other side of low-level
code generation, LegoBase [33] advocates “abstraction with-
out regret” and staged compilation; its query engine and its
optimization rules are both written in the high-level lan-
guage Scala. Different optimizations can be applied in every
query translation step from the original Scala representation
to the C code that is eventually generated. For ViDa, code
generation is a valuable tool to handle the model heterogene-
ity and to generate internal structures and query operators
suitable for the data and the query characteristics.

Query Comprehensions. List and monad comprehen-
sions [9, 53] are popular constructs in (functional) program-
ming languages. They have been used to iterate through
collections in programming languages such as Haskell, Scala,
F#, Python and JavaScript. From a database-oriented per-
spective, the Kleisli functional query system [55] uses the
comprehension syntax and has been used as a facilitator
for data integration tasks due to its expressive power [8].
RodentStore [15] uses list comprehensions as the basis for
its storage algebra; it manipulates the physical representa-

tion of the data by utilizing the expressive nature of com-
prehensions to express transformations. LINQ [38] exposes
query comprehension syntax and enables queries over nu-
merous databases. Monoid comprehensions [22, 23] have
also been proposed as the calculus for the translation of
object-oriented query languages, offering a complete frame-
work for the application of numerous optimization tech-
niques [23, 24].

9. CONCLUSIONS
Existing data analysis solutions typically involve trans-

forming all datasets in a single proprietary format and load-
ing them in a warehouse prior to initiating analysis. Such
solutions do not scale with the increasing volume and di-
versity of data and query workloads. In addition, they are
incompatible with scenarios in which data movement is pro-
hibitive, while they are not flexible enough for users to an-
alyze their data ad-hoc.

In this paper, we made the case for ViDa, a novel sys-
tem focusing on virtualizing data; abstracting data out of
its form, and manipulating it regardless of the way it is
stored or structured. ViDa handles the underlying model
heterogeneity by using an expressive internal query language
and employs code generation techniques to adapt its entire
query engine to the underlying data and to the current query
workload. Our preliminary results show that virtualization
of heterogeneous raw data using ViDa is a viable option
for data analysis, while being significantly more expressive
and flexible than state-of-the-art solutions. ViDa’s proto-
type implementation offers competitive performance with-
out breaking the rigid requirements of our use case: no data
was copied, moved or “locked” in a proprietary format, and
no transformations were needed.
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