24 research outputs found

    Aerial Manipulation: A Literature Review

    Get PDF
    Aerial manipulation aims at combining the versatil- ity and the agility of some aerial platforms with the manipulation capabilities of robotic arms. This letter tries to collect the results reached by the research community so far within the field of aerial manipulation, especially from the technological and control point of view. A brief literature review of general aerial robotics and space manipulation is carried out as well

    Observer-based Controller for VTOL-UAVs Tracking using Direct Vision-Aided Inertial Navigation Measurements

    Full text link
    This paper proposes a novel observer-based controller for Vertical Take-Off and Landing (VTOL) Unmanned Aerial Vehicle (UAV) designed to directly receive measurements from a Vision-Aided Inertial Navigation System (VA-INS) and produce the required thrust and rotational torque inputs. The VA-INS is composed of a vision unit (monocular or stereo camera) and a typical low-cost 6-axis Inertial Measurement Unit (IMU) equipped with an accelerometer and a gyroscope. A major benefit of this approach is its applicability for environments where the Global Positioning System (GPS) is inaccessible. The proposed VTOL-UAV observer utilizes IMU and feature measurements to accurately estimate attitude (orientation), gyroscope bias, position, and linear velocity. Ability to use VA-INS measurements directly makes the proposed observer design more computationally efficient as it obviates the need for attitude and position reconstruction. Once the motion components are estimated, the observer-based controller is used to control the VTOL-UAV attitude, angular velocity, position, and linear velocity guiding the vehicle along the desired trajectory in six degrees of freedom (6 DoF). The closed-loop estimation and the control errors of the observer-based controller are proven to be exponentially stable starting from almost any initial condition. To achieve global and unique VTOL-UAV representation in 6 DoF, the proposed approach is posed on the Lie Group and the design in unit-quaternion is presented. Although the proposed approach is described in a continuous form, the discrete version is provided and tested. Keywords: Vision-aided inertial navigation system, unmanned aerial vehicle, vertical take-off and landing, stochastic, noise, Robotics, control systems, air mobility, observer-based controller algorithm, landmark measurement, exponential stability

    Observer-based fuzzy tracking control for an unmanned aerial vehicle with communication constraints

    Get PDF
    We investigate the trajectory tracking problem of underactuated aerial vehicles with unknown mass in the presence of unknown non-vanishing disturbances using an event-triggered approach, while considering the constraint that the derivative of the reference trajectory is not available. In contrast to existing references where the derivative of the reference trajectory is needed, here we first introduce a high-gain observer to estimate the unknown derivative solely from the reference trajectory. A disturbance observer is designed to compensate for non-vanishing disturbances, such as wind, etc. Fuzzy logic systems are used to approximate the model uncertainty arising from the unknown mass of the vehicle, and then we derive a thrust command law that follows from a desired stabilizing force. Additionally, unlike traditional fixed and relative threshold strategies that rely solely on control signals, we develop a new time-varying eventtriggered mechanism linked to the performance of the controlled system, taking into account factors such as tracking errors, to develop angular velocity commands, enhancing tracking accuracy while efficiently conserving communication resources, especially in the absence of Zeno behavior. We present simulation results to demonstrate the efficacy of the proposed approach and validate the theoretical findings.</p

    Coordination Control of Quadrotor VTOL Aircraft in Three-Dimensional Space

    Get PDF
    This paper presents a constructive design of distributed coordination controllers for a group of N quadrotor vertical take-off and landing (VTOL) aircraft in three-dimensional space. A combination of Euler angles and unit-quaternion for the attitude representation of the aircraft is used to result in an effective control design, and to reduce singularities in the aircraft’s dynamics. The coordination control design is based on a new bounded control design technique for second-order systems and new pairwise collision avoidance functions. The pairwise collision functions are functions of both relative positions and relative velocities between the aircraft instead of only their relative positions as in the literature. To overcome the inherent underactuation of the aircraft, the roll and pitch angles of the aircraft are considered as immediate controls. Simulations illustrate the results

    Neural-Networks Control for Hover to High-Speed-Level-Flight Transition of Ducted Fan UAV With Provable Stability

    Get PDF
    In this paper, we focus on the transition control of a ducted fan vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV). To achieve a steady transition from hover to high-speed flight, a neural-networks-based controller is proposed to learn the system dynamics and compensate for the tracking error between the aircraft dynamics and the desired dynamic performance. In prior, we derive the nonlinear system model of the aircraft full-envelope dynamics. Then, we propose a novel neural-networks-based control scheme and apply it on the underactuated aircraft system. Key features of the proposed controller consist of projection operator, state predictor and dynamic-formed adaptive input. It is proved and guaranteed that the tracking errors of both state predictor and neural-networks weights are upper bounded during the whole neural-networks learning procedure. The very adaptive input is formed into a dynamic structure that helps achieve a reliable fast convergence performance of the proposed controller, especially in high-frequency disturbance conditions. Consequently, the closed-loop system of the aircraft is able to track a certain trajectory with desired dynamic performance. Satisfactory results are obtained from both simulations and practical flight test in accomplishing the designed flight course

    Backpropagating constraints-based trajectory tracking control of a quadrotor with constrained actuator dynamics and complex unknowns

    Get PDF
    In this paper, a backpropagating constraints-based trajectory tracking control (BCTTC) scheme is addressed for trajectory tracking of a quadrotor with complex unknowns and cascade constraints arising from constrained actuator dynamics, including saturations and dead zones. The entire quadrotor system including actuator dynamics is decomposed into five cascade subsystems connected by intermediate saturated nonlinearities. By virtue of the cascade structure, backpropagating constraints (BCs) on intermediate signals are derived from constrained actuator dynamics suffering from nonreversible rotations and nonnegative squares of rotors, and decouple subsystems with saturated connections. Combining with sliding-mode errors, BC-based virtual controls are individually designed by addressing underactuation and cascade constraints. In order to remove smoothness requirements on intermediate controls, first-order filters are employed, and thereby contributing to backstepping-like subcontrollers synthesizing in a recursive manner. Moreover, universal adaptive compensators are exclusively devised to dominate intermediate tracking residuals and complex unknowns. Eventually, the closed-loop BCTTC system stability can be ensured by the Lyapunov synthesis, and trajectory tracking errors can be made arbitrarily small. Simulation studies demonstrate the effectiveness and superiority of the proposed BCTTC scheme for a quadrotor with complex constrains and unknowns

    Tracking Control of Quadrotors

    Get PDF
    In this thesis, the tracking control problem of a 6 DOF quadrotor is considered, and different control method is proposed considering optimal control, parametric and nonparametric uncertainty, input saturation, and distributed formation control. An optimal control approach is developed for single quadrotor tracking by minimizing the cost function. For uncertainties of the dynamic system, a robust adaptive tracking controller is proposed with the special structure of the dynamics of the system. Considering the uncertainty and input constraints, a robust adaptive saturation controller is proposed with the aid of an auxiliary compensated system. Decentralized formation control method for quadrotors is presented using a leader-follower scheme using proposed optimal control method. Virtual leader is employed to drive the quadrotors to their desired formation and ultimately track the trajectory defined by the virtual leader. Sliding mode estimators have been implemented to estimate the states of the virtual leader. The control method is designed considering switching communication topologies among the quadrotors. Simulation results are provided to show the effectiveness of the proposed approaches
    corecore