1,206 research outputs found

    Stochastic scheduling on unrelated machines

    Get PDF
    Two important characteristics encountered in many real-world scheduling problems are heterogeneous machines/processors and a certain degree of uncertainty about the actual sizes of jobs. The first characteristic entails machine dependent processing times of jobs and is captured by the classical unrelated machine scheduling model.The second characteristic is adequately addressed by stochastic processing times of jobs as they are studied in classical stochastic scheduling models. While there is an extensive but separate literature for the two scheduling models, we study for the first time a combined model that takes both characteristics into account simultaneously. Here, the processing time of job jj on machine ii is governed by random variable PijP_{ij}, and its actual realization becomes known only upon job completion. With wjw_j being the given weight of job jj, we study the classical objective to minimize the expected total weighted completion time E[∑jwjCj]E[\sum_j w_jC_j], where CjC_j is the completion time of job jj. By means of a novel time-indexed linear programming relaxation, we compute in polynomial time a scheduling policy with performance guarantee (3+Δ)/2+ϵ(3+\Delta)/2+\epsilon. Here, ϵ>0\epsilon>0 is arbitrarily small, and Δ\Delta is an upper bound on the squared coefficient of variation of the processing times. We show that the dependence of the performance guarantee on Δ\Delta is tight, as we obtain a Δ/2\Delta/2 lower bound for the type of policies that we use. When jobs also have individual release dates rijr_{ij}, our bound is (2+Δ)+ϵ(2+\Delta)+\epsilon. Via Δ=0\Delta=0, currently best known bounds for deterministic scheduling are contained as a special case

    Smolyak's algorithm: A powerful black box for the acceleration of scientific computations

    Full text link
    We provide a general discussion of Smolyak's algorithm for the acceleration of scientific computations. The algorithm first appeared in Smolyak's work on multidimensional integration and interpolation. Since then, it has been generalized in multiple directions and has been associated with the keywords: sparse grids, hyperbolic cross approximation, combination technique, and multilevel methods. Variants of Smolyak's algorithm have been employed in the computation of high-dimensional integrals in finance, chemistry, and physics, in the numerical solution of partial and stochastic differential equations, and in uncertainty quantification. Motivated by this broad and ever-increasing range of applications, we describe a general framework that summarizes fundamental results and assumptions in a concise application-independent manner

    Approximation Algorithms for Correlated Knapsacks and Non-Martingale Bandits

    Full text link
    In the stochastic knapsack problem, we are given a knapsack of size B, and a set of jobs whose sizes and rewards are drawn from a known probability distribution. However, we know the actual size and reward only when the job completes. How should we schedule jobs to maximize the expected total reward? We know O(1)-approximations when we assume that (i) rewards and sizes are independent random variables, and (ii) we cannot prematurely cancel jobs. What can we say when either or both of these assumptions are changed? The stochastic knapsack problem is of interest in its own right, but techniques developed for it are applicable to other stochastic packing problems. Indeed, ideas for this problem have been useful for budgeted learning problems, where one is given several arms which evolve in a specified stochastic fashion with each pull, and the goal is to pull the arms a total of B times to maximize the reward obtained. Much recent work on this problem focus on the case when the evolution of the arms follows a martingale, i.e., when the expected reward from the future is the same as the reward at the current state. What can we say when the rewards do not form a martingale? In this paper, we give constant-factor approximation algorithms for the stochastic knapsack problem with correlations and/or cancellations, and also for budgeted learning problems where the martingale condition is not satisfied. Indeed, we can show that previously proposed LP relaxations have large integrality gaps. We propose new time-indexed LP relaxations, and convert the fractional solutions into distributions over strategies, and then use the LP values and the time ordering information from these strategies to devise a randomized adaptive scheduling algorithm. We hope our LP formulation and decomposition methods may provide a new way to address other correlated bandit problems with more general contexts

    Competitive Algorithms for the Online Multiple Knapsack Problem with Application to Electric Vehicle Charging

    Get PDF
    We introduce and study a general version of the fractional online knapsack problem with multiple knapsacks, heterogeneous constraints on which items can be assigned to which knapsack, and rate-limiting constraints on the assignment of items to knapsacks. This problem generalizes variations of the knapsack problem and of the one-way trading problem that have previously been treated separately, and additionally finds application to the real-time control of electric vehicle (EV) charging. We introduce a new algorithm that achieves a competitive ratio within an additive factor of one of the best achievable competitive ratios for the general problem and matches or improves upon the best-known competitive ratio for special cases in the knapsack and one-way trading literatures. Moreover, our analysis provides a novel approach to online algorithm design based on an instance-dependent primal-dual analysis that connects the identification of worst-case instances to the design of algorithms. Finally, we illustrate the proposed algorithm via trace-based experiments of EV charging

    Competitive Algorithms for the Online Multiple Knapsack Problem with Application to Electric Vehicle Charging

    Get PDF
    We introduce and study a general version of the fractional online knapsack problem with multiple knapsacks, heterogeneous constraints on which items can be assigned to which knapsack, and rate-limiting constraints on the assignment of items to knapsacks. This problem generalizes variations of the knapsack problem and of the one-way trading problem that have previously been treated separately, and additionally finds application to the real-time control of electric vehicle (EV) charging. We introduce a new algorithm that achieves a competitive ratio within an additive factor of one of the best achievable competitive ratios for the general problem and matches or improves upon the best-known competitive ratio for special cases in the knapsack and one-way trading literatures. Moreover, our analysis provides a novel approach to online algorithm design based on an instance-dependent primal-dual analysis that connects the identification of worst-case instances to the design of algorithms. Finally, we illustrate the proposed algorithm via trace-based experiments of EV charging
    • …
    corecore