9 research outputs found

    Future Evolution of CSMA Protocols for the IEEE 802.11 Standard

    Full text link
    In this paper a candidate protocol to replace the prevalent CSMA/CA medium access control in Wireless Local Area Networks is presented. The proposed protocol can achieve higher throughput than CSMA/CA, while maintaining fairness, and without additional implementation complexity. Under certain circumstances, it is able to reach and maintain collision-free operation, even when the number of contenders is variable and potentially large. It is backward compatible, allowing for new and legacy stations to coexist without degrading one another's performance, a property that can make the adoption process by future versions of the standard smooth and inexpensive.Comment: This paper has been accepted in the Second IEEE ICC Workshop 2013 on Telecommunication Standards: From Research to Standard

    Towards a Collision-Free WLAN: Dynamic Parameter Adjustment in CSMA/E2CA

    Get PDF
    Carrier Sense Multiple Access with Enhanced Collision Avoidance (CSMA/ECA) is a distributed MAC protocol that allows collision-free access to the medium in WLAN. The only difference between CSMA/ECA and the well-known CSMA/CA is that the former uses a deterministic backoff after successful transmissions. Collision-free operation is reached after a transient state during which some collisions may occur. This article shows that the duration of the transient state can be shortened by appropriately setting the contention parameters. Standard absorbing Markov Chain theory can be used to describe the behaviour of the system in the transient state and to predict the expected number of slots to reach the collision-free operation. The article also introduces CSMA/E2CA, in which a deterministic backoff is used two consecutive times after a successful transmission. CSMA/E2CA converges quicker to collision-free operation and delivers higher performance than CSMA/CA in harsh wireless scenarios with high frame error rates. To achieve collision-free operations when the number of contenders is large, it may be necessary to dynamically adjust the contention parameter. The last part of the article suggests an approach for such parameter adjustment which is validated by simulation results

    Throughput Analysis of Primary and Secondary Networks in a Shared IEEE 802.11 System

    Full text link
    In this paper, we analyze the coexistence of a primary and a secondary (cognitive) network when both networks use the IEEE 802.11 based distributed coordination function for medium access control. Specifically, we consider the problem of channel capture by a secondary network that uses spectrum sensing to determine the availability of the channel, and its impact on the primary throughput. We integrate the notion of transmission slots in Bianchi's Markov model with the physical time slots, to derive the transmission probability of the secondary network as a function of its scan duration. This is used to obtain analytical expressions for the throughput achievable by the primary and secondary networks. Our analysis considers both saturated and unsaturated networks. By performing a numerical search, the secondary network parameters are selected to maximize its throughput for a given level of protection of the primary network throughput. The theoretical expressions are validated using extensive simulations carried out in the Network Simulator 2. Our results provide critical insights into the performance and robustness of different schemes for medium access by the secondary network. In particular, we find that the channel captures by the secondary network does not significantly impact the primary throughput, and that simply increasing the secondary contention window size is only marginally inferior to silent-period based methods in terms of its throughput performance.Comment: To appear in IEEE Transactions on Wireless Communication

    Dynamic tuning of the IEEE 802.11 distributed coordination function to derive a theoretical throughput limit

    Get PDF
    IEEE 802.11 is the most popular and widely used standard for wireless local area network communication. It has attracted countless numbers of studies devoted to improving the performance of the standard in many ways. In this article, we performed theoretical analyses for providing a solution to the maximum throughput problem for the IEEE 802.11 distributed coordination function, and an algorithm using a binary cubic equation for obtaining a much closer approximation of the optimal solution than previous algorithms. Moreover, by studying and analyzing the characteristics of the proposed algorithm, we found that the effects of backoff counter consecutive freeze process could be neglected or even disregarded. Using the NS2 network simulator, we not only showed that the proposed theoretical analysis complied with the simulated results, but also verified that the proposed approach outperformed others in achieving a much closer approximation to the optimal solution

    MAC for Networks with Multipacket Reception Capability and Spatially Distributed Nodes

    Get PDF

    Towards reliable geographic broadcasting in vehicular networks

    Get PDF
    In Vehicular ad hoc Networks (VANETs), safety-related messages are broadcasted amongst cars, helping to improve drivers' awareness of the road situation. VANETs’ reliability are highly affected by channel contention. This thesis first addresses the issue of channel use efficiency in geographical broadcasts (geocasts). Constant connectivity changes inside a VANET make the existing routing algorithms unsuitable. This thesis presents a geocast algorithm that uses a metric to estimate the ratio of useful to useless packet received. Simulations showed that this algorithm is more channel-efficient than the farthest-first strategy. It also exposes a parameter, allowing it to adapt to channel load. Second, this thesis presents a method of estimating channel load for providing feedback to moderate the offered load. A theoretical model showing the relationship between channel load and the idle time between transmissions is presented and used to estimate channel contention. Unsaturated stations on the network were shown to have small but observable effects on this relationship. In simulations, channel estimators based on this model show higher accuracy and faster convergence time than by observing packet collisions. These estimators are also less affected by unsaturated stations than by observing packet collisions. Third, this thesis couples the channel estimator to the geocast algorithm, producing a closed-loop load-reactive system that allows geocasts to adapt to instantaneous channel conditions. Simulations showed that this system is not only shown to be more efficient in channel use and be able to adapt to channel contention, but is also able to self-correct suboptimal retransmission decisions. Finally, this thesis demonstrates that all tested network simulators exhibit unexpected behaviours when simulating broadcasts. This thesis describes in depth the error in ns-3, leading to a set of workarounds that allows results from most versions of ns-3 to be interpreted correctly
    corecore