130 research outputs found

    Nonsingular terminal sliding mode control for the speed regulation of permanent magnet synchronous motor with parameter uncertainties

    Get PDF
    The drive performance of permanent magnet synchronous motor (PMSM) can be deteriorated due to various disturbances. In this paper, the problem of speed control for a PMSM system with parameter uncertainties is investigated. A new control algorithm based on nonsingular terminal sliding mode control (NTSMC) is proposed, where the controller is developed for speed regulation. Compared with conventional strategies, this new controller provides improved performance for speed regulation of PMSM when subject to parameter uncertainties, in that it achieves fast dynamic response and strong robustness. Simulation studies are conducted to verify the effectiveness of this proposed method

    Sliding Mode Disturbance Observer-Based Fractional Second-Order Nonsingular Terminal Sliding Mode Control for PMSM Position Regulation System

    Get PDF
    This paper investigates the position regulation problem of permanent magnet synchronous motor (PMSM) subject to parameter uncertainties and external disturbances. A novel fractional second-order nonsingular terminal sliding mode control (F2NTSMC) is proposed and the finite time stability of the closed-loop system is ensured. A sliding mode disturbance observer (SMDO) is developed to estimate and make feedforward compensation for the lumped disturbances of the PMSM system. Moreover, the finite-time convergence of estimation errors can be guaranteed. The control scheme combining F2NTSMC and SMDO can not only improve performance of the closed-loop system and attenuate disturbances, but also reduce chattering effectively. Simulation results show that the proposed control method can obtain satisfactory position tracking performance and strong robustness

    Antidisturbance Vibration Suppression of the Aerial Refueling Hose during the Coupling Process

    Get PDF
    In autonomous aerial refueling (AAR), the vibration of the flexible refueling hose caused by the receiver aircraft’s excessive closure speed should be suppressed once it appears. This paper proposed an active control strategy based on the permanent magnet synchronous motor (PMSM) angular control for the timely and accurate vibration suppression of the flexible refueling hose. A nonsingular fast terminal sliding-mode (NFTSM) control scheme with adaptive extended state observer (AESO) is proposed for PMSM take-up system under multiple disturbances. The states and the “total disturbance” of the PMSM system are firstly reconstituted using the AESO under the uncertainties and measurement noise. Then, a faster sliding variable with tracking error exponential term is proposed together with a special designed reaching law to enhance the global convergence speed and precision of the controller. The proposed control scheme provides a more comprehensive solution to rapidly suppress the flexible refueling hose vibration in AAR. Compared to other methods, the scheme can suppress the flexible hose vibration more fleetly and accurately even when the system is exposed to multiple disturbances and measurement noise. Simulation results show that the proposed scheme is competitive in accuracy, global rapidity, and robustness

    Vector control for a bearingless induction motor based on nonsingular terminal sliding mode structure

    Full text link
    © 2017 IEEE. To improve the performance of the bearingless induction motor (BIM) under disturbances, a nonsingular fast terminal sliding mode control (NFTSMC) strategy is proposed. The sliding mode surface is designed as a combination of linear sliding mode and nonsingular terminal sliding mode. Besides, considering the power function of the state variables, which make the approaching speed correlate with the state variables, so as to improve convergence performance of the linear sliding mode and solve the singularity of terminal sliding mode. Meanwhile, current signal and radial force are extracted by the electromagnetic torque and the equation of levitation force. Therefore, the convergence speed of system can be accelerated during the whole process, which contributes to chattering-free operating. The simulation and experiment results indicate that the proposed method can not only track the given value of the speed and radial displacement quickly, but also improve the operation quality and enhance the system robustness

    Direct thrust force control of primary permanent magnet linear motor based on improved extended state observer and model-free adaptive predictive control

    Get PDF
    A model-free adaptive predictive control algorithm based on an improved extended state observer (IESO) is proposed to solve the problem that the primary permanent magnet linear motor is susceptible to time-varying parameters and unknown disturbances. Firstly, a model-free adaptive control algorithm based on compact format is designed to achieve high control precision of the system and reduce thrust fluctuation, only through the input/output data of the system. Because the traditional model-free adaptive control is too sensitive to the internal parameters of the controller, a combination of model-free adaptive control and predictive control is further developed. By predicting the data for a future time in advance, the sensitivity to the internal parameters of the controller is reduced and the control performance is further improved. Since the load change and other nonlinear disturbances in practical applications have a great impact on the control effect of the system, an improved extended state observer is further used to compensate for the impact of nonlinear disturbances on the control system. In addition, the stability of the closed-loop system is analyzed. Comparable simulation results clearly demonstrate the good tracking performance and strong robustness of the proposed control

    A Nonlinear Sliding Mode Controller for IPMSM Drives with an Adaptive Gain Tuning Rule

    Get PDF
    This paper presents a nonlinear sliding mode control (SMC) scheme with a variable damping ratio for interior permanent magnet synchronous motors (IPMSMs). First, a nonlinear sliding surface whose parameters change continuously with time is designed. Actually, the proposed SMC has the ability to reduce the settling time without an overshoot by giving a low damping ratio at the initial time and a high damping ratio as the output reaches the desired setpoint. At the same time, it enables a fast convergence in finite time and eliminates the singularity problem with the upper bound of an uncertain term, which cannot be measured in practice, by using a simple adaptation law. To improve the efficiency of a system in the constant torque region, the control system incorporates the maximum torque per ampere (MTPA) algorithm. The stability of the nonlinear sliding surface is guaranteed by Lyapunov stability theory. Moreover, a simple sliding mode observer is used to estimate the load torque and system uncertainties. The effectiveness of the proposed nonlinear SMC scheme is verified using comparative experimental results of the linear SMC scheme when the speed reference and load torque change under system uncertainties. From these experimental results, the proposed nonlinear SMC method reveals a faster transient response, smaller steady-state speed error, and less sensitivity to system uncertainties than the linear SMC metho

    A Nonlinear Sliding Mode Controller for IPMSM Drives with an Adaptive Gain Tuning Rule

    Get PDF
    This paper presents a nonlinear sliding mode control (SMC) scheme with a variable damping ratio for interior permanent magnet synchronous motors (IPMSMs). First, a nonlinear sliding surface whose parameters change continuously with time is designed. Actually, the proposed SMC has the ability to reduce the settling time without an overshoot by giving a low damping ratio at the initial time and a high damping ratio as the output reaches the desired setpoint. At the same time, it enables a fast convergence in finite time and eliminates the singularity problem with the upper bound of an uncertain term, which cannot be measured in practice, by using a simple adaptation law. To improve the efficiency of a system in the constant torque region, the control system incorporates the maximum torque per ampere (MTPA) algorithm. The stability of the nonlinear sliding surface is guaranteed by Lyapunov stability theory. Moreover, a simple sliding mode observer is used to estimate the load torque and system uncertainties. The effectiveness of the proposed nonlinear SMC scheme is verified using comparative experimental results of the linear SMC scheme when the speed reference and load torque change under system uncertainties. From these experimental results, the proposed nonlinear SMC method reveals a faster transient response, smaller steady-state speed error, and less sensitivity to system uncertainties than the linear SMC metho

    A Sliding Mode Control Based Stabilization Method for Directional Rotary Steering Tool-Face

    Get PDF
    When the directional rotary steering system works in the state of maintaining the tool face angle, the use of PID control mode will lead to a large swing angle of the tool face angle of the directional rotary steering system. In order to reduce the swing amplitude of the tool face angle, based on the PID position control and the angle position error sliding mode control strategy, the exponential synovial control function is established. The simulation results show that the fast and accurate tool face angle tracking is achieved through the closed-loop control of the angle position. The paper provides an implementation method for the research of directional rotary steering system
    corecore