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This paper investigates the position regulation problem of permanent magnet synchronous motor (PMSM) subject to parameter
uncertainties and external disturbances. A novel fractional second-order nonsingular terminal sliding mode control (F2NTSMC)
is proposed and the finite time stability of the closed-loop system is ensured. A sliding mode disturbance observer (SMDO) is
developed to estimate andmake feedforward compensation for the lumped disturbances of the PMSM system.Moreover, the finite-
time convergence of estimation errors can be guaranteed. The control scheme combining F2NTSMC and SMDO can not only
improve performance of the closed-loop system and attenuate disturbances, but also reduce chattering effectively. Simulation results
show that the proposed control method can obtain satisfactory position tracking performance and strong robustness.

1. Introduction

Permanent magnet synchronous motor has been widely
applied in industrial automation, household appliances,
computers, high-speed aerospace drives, and automobiles
due to its superior properties such as high power density,
high efficiency, low inertia, and reliable operation [1, 2].
However, the PMSM system is a complex nonlinear system
with multiple coupled states and unavoidable and unmea-
sured disturbances, as well as parameter perturbations. To
achieve high-performance control, various advanced control
methods have been proposed, such as adaptive control [3],
robust control [4], sliding mode control [5, 6], optimal
control [7], backstepping control [8], predictive control [9],
fuzzy control [10], neural network control [11], finite-time
control [12], fractional order control [13, 14], and intelligent
control [15]. These methods have increased the dynamic and
steady state performance of PMSM systems to some degree.
Nevertheless, there still exist several obstacles as to complex

control laws, conservative or excessive control gains [16],
reliance on complete knowledge of the system model, and so
forth.

Slidingmode control (SMC) is a well-known and efficient
control technique to improve disturbance rejection and
robustness of nonlinear systems and parameter estimation
[17], and so forth.When system states are in the slidingmode,
the closed-loop response becomes totally insensitive to both
internal parameter uncertainties and external disturbances
[18]. To further improve the transient performance of the
closed loop system and ensure the finite-time convergence,
terminal sliding mode control (TSMC) that employs non-
linear sliding surface is developed due to some superior
properties such as faster, finite-time convergence and higher
control precision [19]. The finite-time stabilization can bring
dynamical systems to better robustness and disturbance
rejection properties [16].

Zhankui and Sun [20] proposed a second-order fast
terminal sliding mode control scheme that can not only
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guarantee tracking errors in approaching and reaching the
sliding surface in finite time, but also improve tracking
accuracy and eliminate the high frequency chattering of
control inputs effectively. However, the second-order fast
terminal sliding mode control still has a singularity problem.
In Feng et al. [21] and Yu et al. [22], the nonsingular
terminal slidingmode controllers (NTSMC)were designed to
achieve finite-time tracking control of systems and overcome
the singularity problem. Further, Yan et al. [23] combined
NTSMC with second-order SMC to design the second-
order NTSMC (2NTSMC) for the finite-time convergence
of system states. The 2NTSMC possess fast convergence and
high control precision; besides, it can eliminate chattering
behavior of control signals. In order to improve the control
system robustness, the observer-based control method is
often adopted, such as [24].

Fractional order calculus extends integer order to non-
integral order and provide an excellent tool for describ-
ing complex dynamic features. Recently, some researchers
have proposed some fractional-order SMC methodologies.
Dadras and Momeni [19] introduced fractional-order TSMC
(FTSMC) to integer-order nonlinear systems. However, the
chattering problem of control inputs still exists. Aghababa
[25] designed a chatter-free terminal sliding mode controller
for nonlinear fractional-order dynamical systems. However,
to the authors’ best knowledge, the order number of FTSMC
is usually restricted to one and there is little work in which
the order number of FTSMC is second or higher. Therefore,
designing a FTSMC whose order number is greater than
1 for nonlinear dynamic systems is still an open prob-
lem.

To improve robustness during the reaching phase of SMC
and reduce the conservativeness of selecting switching con-
trol gains, a sliding mode disturbance observer (SMDO) is
employed to provide feed-forward compensation for param-
eter uncertainties and external disturbances. Consequently,
the closed loop system can achieve global robustness and
improve disturbance rejection performance.

In this paper, a new fractional second-order nonsingular
terminal sliding mode controller (F2NTSMC) is proposed
to ensure fast and finite-time convergence of the PMSM
system. Then, a switching control law is determined to
drive system states to the designed sliding surface and
subsequently constrain system states to the surface here-
after. Meanwhile, the finite-time stability is proved by using
fractional Lyapunov theory. Moreover, a SMDO is applied
such that uncertainties and disturbance can be estimated
and compensated. Eventually, simulation results verify good
robustness and fast convergence of the proposed fractional
control approach.

The rest of this paper is organized as follows. In Section 2,
preliminaries of fractional-order calculus are introduced. In
Section 3, the fractional-order PMSM system model and
the problem formulation are presented. Section 4 copes
with the proposed fractional-order approach and finite-
time stability analysis. The effectiveness of the proposed
control scheme is illustrated by numerical examples in
Section 5. Finally, some concluding remarks are included in
Section 6.

2. Preliminaries of Fractional-Order Calculus

Fractional-order integration and differentiation are the gen-
eralization of the integer-order ones [19]. Three commonly-
used definitions for fractional order calculus are Riemann-
Liouville, Caputo, and Grünwald-Letnikov definitions as
described below.

Definition 1 (see [26]). The 𝛼th-order fractional integration
of function 𝑓(𝑡)with respect to 𝑡 and the terminal value 𝑎 are
given by

𝐽
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∫
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(1)

and the 𝛼th-order Riemann-Liouville fractional derivative of
function 𝑓(𝑡) is defined as

𝐷
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where 𝑓(𝑡) is integrable on the closed interval [𝑎, 𝑏] and Γ(⋅)

is Euler’s gamma function.

Property 1 (see [26]). For the Riemann-Liouville derivative,
we have
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(3)

Definition 2 (see [26]). The Caputo fractional derivative of
order 𝛼 of a continuous function 𝑓 : 𝑅

+

→ 𝑅 is defined
as follows:
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(4)

Definition 3 (see [26]). The Grünwald-Letnikov fractional
derivative of order 𝛼 of a continuous function 𝑓 : 𝑅

+

→ 𝑅 is
defined as follows:

GL
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(
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𝑘
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(5)

3. Fractional-Order Model of PMSM

Consider a typical PMSM vector control system, as shown
in Figure 1. The differential equations of surface-mounted
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Figure 1: A typical PMSM system based on vector control.

PMSM represented in the rotor reference coordinates based
on the assumptions [27] are given as follows:
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(6)

where 𝑅
𝑠
is the stator resistance; 𝐿

𝑑
and 𝐿

𝑞
are stator

inductances and 𝐿
𝑑
= 𝐿

𝑞
= 𝐿; 𝜓

𝑓
is the rotor flux linkage;

𝑢
𝑑
and 𝑢

𝑞
are stator voltages; 𝑖

𝑑
and 𝑖

𝑞
are stator currents; 𝜔

𝑟

is the rotor angular velocity; 𝐽 is the moment of inertia; 𝐵 is
the viscous friction coefficient; 𝑛

𝑝
is the number of pole pairs,

and 𝑇
𝐿
is the load torque.

In the previous vector control design of PMSM, the 𝑞-
axes stator current 𝑖

𝑞
is usually approximately replaced by the

𝑞-axes reference current 𝑖∗
𝑞
, which degrades the closed-loop

system performance. Motivated by the built second-order
model of PMSM in [28], we propose a fractional-ordermodel
between the 𝑞-axes reference current 𝑖∗

𝑞
and the position

output.
Considering the input and output of the current loop 𝑖

𝑞

in Figure 1, the following Laplace-transform equation can be
easily obtained:

𝑈
𝑞
(𝑠)
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𝑞
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𝑝
+

𝑘
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, (7)

where 𝑈
𝑞
(𝑠), 𝐼∗

𝑞
(𝑠), and 𝐼

𝑞
(𝑠) are the Laplace transformations

of 𝑢
𝑞
, 𝑖∗
𝑞
, and 𝑖

𝑞
, respectively; 𝑘

𝑝
and 𝑘

𝑖
are the proportional

and integral gains of the PI𝜆 controller in the current loop 𝑖
𝑞
,

respectively; 𝜆 is the power of 𝑠 in integral actions.
The fractional-order PMSM dynamic equation is derived

as
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);

𝑑(𝑡) represents the lumped disturbances including viscous
frictions and external load disturbances.

For the convenience of designing the controller, assume
that the speed control loop, the current control loop, and the
inverter are ideal [29]. Thus, the fractional-order model of
PMSM position regulation system is described by

̇
𝜃 = 𝜔,

�̈� = −

𝑘
𝑖

𝑘
𝑝

�̇�
(1−𝜆)

+ 𝑑 (𝑡) + 𝑢.

(9)

The tracking error can be defined as follows:

𝑒 = 𝜃 − 𝜃
𝑑
. (10)

The control objective is to design a F2NTSMC with
SMDO to track the reference trajectory 𝜃

𝑑
in finite time. In

the next section, the design of F2NTSMC and SMDO will be
conducted.

4. Control Design

In this section, a fractional-order nonsingular fast terminal
sliding mode controller is proposed to achieve equivalence
between fast convergence and nonsingularity. The first step
is to develop the F2NTSMC to achieve chattering-free and
robust tracking of the position. And then, a sliding mode
disturbance observer is designed to estimate and compensate
uncertainties and disturbances, which can increase robust-
ness of the control system and improve control performance.
Thus, a control scheme with F2NTSMC and SMDO is
presented.

4.1. Fractional Second-Order Nonsingular Terminal Sliding
Mode Control. To compare the convergence performance
between TSMC and NTSMC, the following sliding mode
surfaces are considered:

𝑠
1
(𝑡) = 𝐷

𝑟1
𝑥 + 𝑎

1
𝑥 + 𝑎

2
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2
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3
𝑥 + 𝑎

4
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3
(𝑡) = 𝐷
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𝑥 + 𝑎

5
sig𝜆3 (𝑥) + 𝑎

6
sig𝜆4 (𝑥) ,

𝑠
4
(𝑡) = 𝐷

𝑟4
𝑥 + 𝑎

7
sig𝜆5 (𝑥) + 𝑎

8
sig𝜆6 (�̇�) ,

(11)
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Figure 2: Convergence conditions of 𝑠
1,...,4

.

where 𝑟
𝑖
∈ (0, 1], 𝑖 = 1, . . . , 4; 𝑎

𝑗
> 0, 𝑗 = 1, . . . , 8;

𝜆
1

> 0, 𝜆
2

> 1, 𝜆
3

> 1, 0 < 𝜆
4

< 1, 𝜆
5

> 𝜆
6
, and

1 < 𝜆
6

< 2; sig𝜆(𝑒) = |𝑒|
𝜆 sign(𝑒) and 𝑠

1
(𝑡), 𝑠

3
(𝑡) are

FTSM surfaces, and 𝑠
2
(𝑡), 𝑠

4
(𝑡) are NFTSM surfaces. All their

initial states are set as 𝑥(0) = 8. The parameters are given by
𝑎
𝑖
= 1, 𝑖 = 1, . . . , 8, 𝜆

1,2,3,5
= 3, 𝜆

4
= 0.5, and 𝜆

6
= 1.5.

It can be seen from Figure 2 that 𝑠
1
(𝑡) and 𝑠

3
(𝑡) have faster

convergence rate than 𝑠
2
(𝑡) and 𝑠

4
(𝑡). For the more detailed

comparison between 𝑠
1
(𝑡) and 𝑠

3
(𝑡), we consider parameters

𝑎
1,2,5,6

̸= 1. The parameters of 𝑠
1
(𝑡) and 𝑠

3
(𝑡) are tuned with

the optimal integrated time absolute error (ITAE) criterion
by minimizing the following formula:

𝐽ITAE = ∫

∞

𝑡0

𝑡 |𝑥 (𝑡)| 𝑑𝑡. (12)

The optimal parameters of 𝑠
1
(𝑡) and 𝑠

3
(𝑡) are

[𝜆
1
, 𝑎

1
, 𝑎

2
]
 = [47.65, 304.19, 80.83]

 and [𝜆
3
, 𝜆

4
, 𝑎

5
, 𝑎

6
]


= [242.69, 31.25, 218.75, 1]
, respectively. The convergence

rate of 𝑠
1
(𝑡) is higher than its counterpart of 𝑠

3
(𝑡).

Therefore, the fractional-order sliding mode surface 𝑠
1
(𝑡)

is chosen to be researched in this paper and rewritten as

𝑠 (𝑡) = 𝐷
𝑟

𝑒 + 𝑏
1
𝑒 + 𝑏

2
sig𝑧 (𝑒) , (13)

where 0 < 𝑟 < 1, 𝑏
1
, 𝑏

2
> 0, and 𝑧 ≥ 2. Note that

𝑑

𝑑𝑡

sig𝑧 (𝑒) = 𝑧|𝑒|
𝑧−1

̇𝑒,

𝑑
2

𝑑𝑡
2
sig𝑧 (𝑒) = 𝑧 (𝑧 − 1) sig𝑧−2 (𝑒) ̇𝑒

2

+ 𝑧|𝑒|
𝑧−1

̈𝑒.

(14)

Once the system operates in the sliding manifold, equa-
tion 𝑠(𝑡) = 0 is satisfied. Since 𝑠(𝑡) = 0 holds in (13), it follows
that

𝐷
𝑟

𝑒 = −𝑏
1
𝑒 − 𝑏

2
sig𝑧 (𝑒) . (15)

Then, a nonsingular fast terminal sliding surface [29] is
selected to ensure 𝑠(𝑡) reach zero in finite time and realize
second-order sliding mode control:

𝜎 = 𝑠 + 𝛼𝑠
𝑔/ℎ

+ 𝛽 ̇𝑠
𝑝/𝑞

, (16)

where 𝛼, 𝛽 > 0, 𝑔, ℎ, 𝑝, 𝑞 are positive odd integers, 𝑔/ℎ > 1,
and 1 < 𝑝/𝑞 < 2.

Furthermore, the following continuous terminal sliding
mode reaching law [29] is introduced to guarantee system
states converge to sliding surfaces in finite time and increase
system robustness:

�̇� = (−𝜙𝜎 − 𝛾𝜎
𝑚/𝑛

) ̇𝑠
𝑝/𝑞−1

, (17)

where 𝜙, 𝛾 > 0, 𝑚, 𝑛 are positive odd integers and 0 < 𝑚/𝑛 <

1.
Suppose 𝑡

𝑟1
is the timewhen𝜎 reaches zero from𝜎(0) ̸= 0,

that is 𝜎(𝑡) = 0 when 𝑡 ≥ 𝑡
𝑟1
. Solving (17) as [29], the time

from 𝜎(0) ̸= 0 to 𝑠(𝑡
𝑠1
) = 0 can be obtained as follows:

𝑡
𝑠1
= 𝑡

𝑟1
+ 2𝜏

−𝑞/𝑝

1

𝑝

𝑝 − 𝑞

𝑉(0)
(𝑝−𝑞)/2𝑝

× 𝐹(𝐴, 𝐵, 𝐶, −

𝜏
2

𝜏
1

𝑉(0)
(𝑔−ℎ)/2ℎ

) ,

(18)

where 𝜏
1
= 2

(𝑝+𝑞)/2𝑞

(1/𝛽), 𝜏
2
= 2

𝑝/2𝑞+𝑔/2ℎ

(𝛼/𝛽), 𝐴 = 𝑞/𝑝,
𝐵 = ℎ(𝑝 − 𝑞)/𝑝(𝑔 − ℎ), 𝐶 = (𝑝𝑔 − 𝑞ℎ)/𝑝(𝑔 − ℎ), 𝐹(⋅) is
Gauss hypergeometric function, and the Lyapunov function
is 𝑉(𝑡) = (1/2)𝑠

2.
Thus, the second-order sliding mode control is achieved.

𝑠 and ̇𝑠 are driven to reach 𝜎 = 0 in finite time and then
remain on 𝜎 = 0 to realize the sliding mode motion. Both
𝑠 and ̇𝑠 reach zero in finite time 𝑡

𝑠1
. After 𝑠 reaches zero, the

system will stay on the sliding mode motion (13) and the
tracking error 𝑒 will converge to zero in finite time 𝑡

𝑠0
which
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is calculated in Theorem 5. Next, the second-order sliding
mode controller will be derived.

Take the second time derivative of both sides of (13), one
obtains

̈𝑠 (𝑡) = 𝐷
𝑟−1 ...

𝑒 + 𝑏
1
̈𝑒 + 𝑏

2
𝐸, (19)

where 𝐸 = 𝑧(𝑧 − 1)sig𝑧−2(𝑒) ̇𝑒
2

+ 𝑧|𝑒|
𝑧−1

̈𝑒.
Differentiating the sliding variable 𝜎, (16) gets

�̇� = ̇𝑠 +

𝛼𝑔

ℎ

𝑠
𝑔/ℎ−1

̇𝑠 +

𝛽𝑝

𝑞

̇𝑠
𝑝/𝑞−1

̈𝑠. (20)

Substituting (19) into (20), it follows that

�̇� = 𝜑 + Δ + 𝜂𝐷
𝑟−1

𝑢, (21)

where 𝜂 = (𝛽𝑝/𝑞) ̇𝑠
𝑝/𝑞−1, Λ = 𝑏

1
̈𝑒 + 𝑏

2
𝐸 − 𝐷

𝑟−1

(

...
𝜃
𝑑
+

(𝑘
𝑖
/𝑘

𝑝
)
̈

𝜃
(1−𝜆)

), 𝜑 = ̇𝑠+(𝛼𝑔/ℎ)𝑠
𝑔/ℎ−1

̇𝑠+𝜂Λ, andΔ = 𝜂𝐷
𝑟−1

𝑑(𝑡).
From (17) and (21), the fractional-order terminal sliding

mode controller is designed as

𝑢 = −𝜂
−1

𝐷
1−𝑟

[(𝜙𝜎 + 𝛾𝜎
𝑚/𝑛

) ̇𝑠
𝑝/𝑞−1

+ 𝜑 + Δ]

= −

𝑞

𝛽𝑝

𝐷
1−𝑟

[𝜙𝜎 + 𝛾𝜎
𝑚/𝑛

+ (1 +

𝛼𝑔

ℎ

𝑠
𝑔/ℎ−1

)

× ̇𝑠
2−𝑝/𝑞

+

𝛽𝑝

𝑞

Λ] − 𝑑 (𝑡) ,

(22)

where 𝑑(𝑡) denotes unknown uncertainties and disturbances.
Considering (22), all fractional powers of 𝑠 and ̇𝑠 are

positive; that is, the control method is nonsingular. After the
system state enters the sliding mode 𝜎 = 0, there is also
no singularity. Therefore, the system is globally nonsingular
during both the reaching phase and the sliding phase.

4.2. Sliding Mode Disturbance Observer. In order to increase
robustness of the controller and improve control perfor-
mance, a SMDO is proposed to estimate uncertainties and
disturbances.

Equation (21) is rewritten as
̇
𝜎 = 𝜑 + 𝑑 + 𝑢, (23)

where ̇
𝜎 = 𝜂

−1

𝐷
1−𝑟

�̇� and 𝜑 = 𝜂
−1

𝐷
1−𝑟

𝜑.
Select the auxiliary sliding variable as

𝜌 = 𝜎 − 𝜆. (24)

Construct a disturbance observer as follows:
̇
𝜆 = 𝜑 + 𝑢 + V. (25)

By differentiating 𝜌 with respect to time, one obtains

̇𝜌 = 𝑑 − V. (26)

Then, the auxiliary super-twisting slidingmode control is
designed to drive the sliding variable 𝜌 to zero:

V = 𝑘
𝑜1





𝜌





3/2 sign (𝜌) − 𝑧,

�̇� = −𝑘
𝑜2
𝜌
2 sign (𝜌) .

(27)

Equation (26) closed by control (27) results in

̇𝜌 = −𝑘
𝑜1





𝜌





3/2 sign (𝜌) + 𝑧 + 𝑑,

�̇� = −𝑘
𝑜2
𝜌
2 sign (𝜌) .

(28)

Theorem 4. Suppose that the uncertainties of the system (28)
are globally bounded by

|𝑑| ≤ 𝛿




𝜌





3/2

. (29)

Then, sliding variable 𝜌 of (28) converges in finite time to the
origin 𝜌 = 0 if the gains satisfy the following relations:

𝑘
𝑜1
> 2𝛿, 𝑘

𝑜2
>

𝑘
𝑜1
𝛿
2

8 (𝑘
𝑜1
− 2𝛿)

. (30)

The convergence time 𝑡(𝜌
0
) is upperbounded by

𝑇 = 2𝑉
1/2

(𝜌
0
)/𝛾, where 𝜌

0
is the initial state and

𝛾 = 𝜆
1/2

min(𝜒)𝜆min(Θ)/𝜆max(𝜒) [30].

Proof. We propose the following Lyapunov function and its
quadratic form:

𝑉 = 𝑘
𝑜2





𝜌





3

+ (𝐷
−1

𝑧)

2

+

1

2

(𝑘
𝑜1





𝜌





3/2 sign (𝜌) − 𝐷
−1

𝑧)

2

= 𝜁
𝑇

𝜒𝜁,

(31)

where

𝜁
𝑇

= [




𝜌





3/2 sign (𝜌) , 𝐷−1

𝑧] ,

𝜒 =

1

2

[

𝑘
2

𝑜1

+ 2𝑘
𝑜2

−𝑘
𝑜1

−𝑘
𝑜1

3

] .

(32)

Its time derivative along the solution of (31) is

�̇� = −




𝜌





1/2

𝜁
𝑇

Θ𝜁 +




𝜌





1/2

𝑑𝑞
𝑇

1
𝜁, (33)

where

Θ =

3𝑘
𝑜1

2

[

[

𝑘
2

𝑜1

+

4

3

𝑘
𝑜2

−𝑘
𝑜1

−𝑘
𝑜1

1

]

]

,

𝑞
𝑇

1
= 3[

𝑘
2

𝑜1

2

+ 𝑘
𝑜2
, −

𝑘
𝑜1

2

] .

(34)

Applying (29), it yields

�̇� ≤ −




𝜌





1/2

𝜁
𝑇

Θ𝜁, (35)

where

Θ =

3𝑘
𝑜1

2

[

[

[

[

𝑘
2

𝑜1

+

4

3

𝑘
𝑜2
− (

2𝑘
𝑜2

𝑘
𝑜1

+ 𝑘
𝑜1
)𝛿 −𝑘

𝑜1
+

𝛿

2

−𝑘
𝑜1
+

𝛿

2

1

]

]

]

]

. (36)
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�̇� is negative definite if Θ > 0. It is easy to see that this
is the case if the gains are as in (30). The sliding variable 𝜌
is driven to zero in finite time 𝑇 = 2𝑉

1/2

(𝜌
0
)/𝛾. Namely, the

lumped disturbances 𝑑(𝑡) are exactly estimated by V =
̂
𝑑 in

finite time 𝑇. This completes the proof.

Eventually, the fractional-order terminal sliding mode
controller with SMDO is designed as

𝑢 = −𝜂
−1

𝐷
1−𝑟

[(𝜙𝜎 + 𝛾𝜎
𝑚/𝑛

) ̇𝑠
𝑝/𝑞−1

+ 𝜑 + Δ]

= −

𝑞

𝛽𝑝

𝐷
1−𝑟

[𝜙𝜎 + 𝛾𝜎
𝑚/𝑛

+ (1 +

𝛼𝑔

ℎ

𝑠
𝑔/ℎ−1

)

× ̇𝑠
2−𝑝/𝑞

+

𝛽𝑝

𝑞

Λ] −
̂
𝑑 (𝑡) .

(37)

In the next section, the stability of the proposed controller
will be proved.

4.3. Stability Analysis. The stability analysis consists of two
parts.Thefirst part is to prove that position tracking error (10)
of the system (9) converges to 𝑒 = 0 in finite time.The second
part is to verify whether or not the proposed approach (37)
can ensure the system trajectories (21) converge to the sliding
surface 𝑠(𝑡) = 0 in finite time and have no singularity.

Theorem 5. Consider the sliding mode surface (13). The
tracking errors converge to the origin 𝑒 = 0 in finite time
𝑡
𝑠0
≤ (𝑉

𝑟−2

(𝑡
𝑟0
)/(𝑏

2
− ℓ)𝐿)

1/(2−𝑟), where 𝑡
𝑟0
is the reaching time

from 𝑠 ̸= 0 to 𝑠 = 0, 𝑏
2
, and ℓ and 𝐿 are positive constants.

Proof. Motivated by [25, 31], assume that the following
inequality is valid:













∞

∑

𝑗=1

Γ (𝑟 + 1)

Γ (𝑗 + 1) Γ (𝑟 − 𝑗 + 1)

𝐷
𝑗

𝑒𝐷
𝑟−𝑗

𝑒













≤ ℓ|𝑒|
𝜁

, (38)

where ℓ and 𝜁 are optional positive constants.
The Lyapunov function is defined as

𝑉 (𝑡) = 𝑒
2

. (39)

Taking fractional-order derivative of both sides of (39)
with respect to time, it yields [31]

𝐷
𝑟

𝑉 (𝑡) = 𝑒𝐷
𝑟

𝑒 +

∞

∑

𝑗=1

Γ (𝑟 + 1)

Γ (𝑗 + 1) Γ (𝑟 − 𝑗 + 1)

𝐷
𝑗

𝑒𝐷
𝑟−𝑗

𝑒. (40)

The value of 𝜁 is set as (𝑧 + 1). Substituting (15) and
inequality (38) into (40), one has

𝐷
𝑟

𝑉 (𝑡) ≤ 𝑒𝐷
𝑟

𝑒 +













∞

∑

𝑗=1

Γ (𝑟 + 1)

Γ (𝑗 + 1) Γ (𝑟 − 𝑗 + 1)

𝐷
𝑗

𝑒𝐷
𝑟−𝑗

𝑒













≤ −𝑒 (𝑏
1
𝑒 + 𝑏

2
sig𝑧 (𝑒)) + ℓ|𝑒|

𝑧+1

≤ − (𝑏
2
− ℓ) |𝑒|

𝑧+1

,

(41)

where 𝑏
2
is chosen appropriately such that 𝑏

2
> ℓ is

satisfied. Consequently, by Theorem 5, the system error 𝑒(𝑡)
will converge to zero asymptotically. Next, the convergence
of 𝑒(𝑡) to zero in finite time will be proved.

Taking fractional-order integral of (38) from reaching
time 𝑡

𝑟0
to stopping time 𝑡

𝑠0
, one obtains

𝑉(𝑡
𝑠0
) − 𝑉

𝑟−2

(𝑡
𝑟0
)

𝑡
𝑟−2

𝑠0

Γ (𝑟 − 1)

≤ − (𝑏
2
− ℓ)𝐷

1−𝑟

|𝑒|
𝑧+1

. (42)

According to [25], there exists a positive constant 𝐿 such
that𝐷−𝑟

|𝑒|
𝑧+1

≥ 𝐿. Noting that 𝑒(𝑡
𝑠0
) = 0, it follows that

−𝑉
𝑟−2

(𝑡
𝑟0
)

𝑡
𝑟−2

𝑠0

Γ (𝑟 − 1)

≤ − (𝑏
2
− ℓ) 𝐿. (43)

Solving the inequality (43), it yields

𝑡
𝑠0
≤ (

𝑉
𝑟−2

(𝑡
𝑟0
)

(𝑏
2
− ℓ) 𝐿

)

1/(2−𝑟)

. (44)

Therefore, the tracking error 𝑒 (10) will converge to zero
in finite time. This completes the proof.

Theorem 6. Consider the fractional-order PMSM system (9).
If the system is controlled by the control input (37), then system
states will converge to the sliding surface 𝑠(𝑡) = 0 in finite time
𝑡
𝑠1
(18).

Proof. Consider the following Lyapunov function

𝑉 =

1

2

𝜎
2

. (45)

Differentiating 𝑉 with respect to time, we have

�̇� = 𝜎�̇� = 𝜎 (𝜑 + Δ + 𝜂𝐷
𝑟−1

𝑢)

= 𝜎 {𝜑 + Δ + 𝜂

× [𝜂
−1

( − 𝜑 − (𝜙𝜎 + 𝛾𝜎
𝑚/𝑛

)

× ̇𝑠
𝑝/𝑞−1

− 𝐷
𝑟−1 ̂

𝑑 (𝑡))]}

= 𝜎 (− (𝜙𝜎 + 𝛾𝜎
𝑚/𝑛

) ̇𝑠
𝑝/𝑞−1

+ Δ − Δ̂)

= −𝜎 (𝜙𝜎 + 𝛾𝜎
𝑚/𝑛

) ̇𝑠
𝑝/𝑞−1

+ 𝜎Δ̃,

(46)

where Δ̃ = Δ−Δ̂. Since the sliding variable𝜎 converges to zero
only after the lumped disturbances Δ is estimated in finite
time 𝑇, that is, Δ̃ = Δ − Δ̂ → 0 when 𝑡 > 𝑇, therefore,
for 𝑡 > 𝑇, we have

�̇� = −𝜎
𝑇

(𝜙𝜎 + 𝛾𝜎
𝑚/𝑛

) ̇𝑠
𝑝/𝑞−1

≤ −𝜅 ̇𝑠
𝑝/𝑞−1

(𝜎
2

+ 𝜎
1+𝑚/𝑛

) | 𝜅 = min (𝜙, 𝛾)

≤ −𝜅 ̇𝑠
𝑝/𝑞−1

𝜎
1+𝑚/𝑛

= −𝜅 ̇𝑠
𝑝/𝑞−1

𝑉
(1+𝑚/𝑛)/2

.

(47)

Owing to 0 < 𝑚/𝑛 < 1, it gets that 0 < (1 + 𝑚/𝑛)/2 < 1.
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Figure 3: Control performance of ITSMC and I2NTSMC for the nominal system. (a) Position tracking performance, (b) tracking errors, (c)
sliding surfaces, (d) control inputs, and (e) current 𝑖∗

𝑞
.
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−
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𝜃

Figure 6: Block diagram of the SMDO-based F2NTSMC system.

Equation (47) belongs to the following type of inequality:

�̇� (𝑡) ≤ −𝑎𝑉
𝜂

(𝑡) , ∀𝑡 ≥ 𝑡
0
, 𝑉 (𝑡

0
) ≥ 0. (48)

Based on [32, Lemma 2], the sliding variables 𝜎 will
converge to zero in finite time driven by the control input
(37). Then, 𝑠 reaches zero in finite time 𝑡

𝑠1
. Hence, the proof

is achieved.

5. Simulation Results

This section presents simulation results to investigate control
performance of the proposed method. The parameters of
both current loops are set as 𝑘

𝑝
= 200, 𝑘

𝑖
= 5000, and 𝜆 = 0.2.

The parameter values of the PMSM system are as follows:
rated power is 𝑃 = 7.5 kW; rated voltage is 𝑈 = 200V;
rated torque is 𝑇

𝑁
= 2.5N ⋅ m; number of poles is 𝑛

𝑝
= 4;

moment of inertia is 𝐽 = 1.78 × 10
−4 kg ⋅m2; stator resistance

is 𝑅
𝑠
= 1.74Ω; rotor flux linkage is 𝜓

𝑓
= 0.402wb; viscous

damping coefficient is 𝐵 = 7.403 × 10
−5N ⋅ m ⋅ s/rad; rated

speed is 𝑛
𝑁

= 3000 rpm, and both stator inductances are
𝐿
𝑞
= 𝐿

𝑑
= 4mh.The saturation limit of 𝑖∗

𝑞
is ±10A.

5.1. Simulation of TSMC and 2NTSMC. In this simulation,
the performance of the conventional TSMC method and
the 2NTSMC method is simulated for comparison. We only
consider the tracking control problem for the nominalmodel,
that is, no parameter uncertainties and external disturbances.
The integral-order sliding surface of conventional TSMC is
designed as follows:

𝑠 (𝑡) = ̈𝑒 + 𝑐
1
𝑒 + 𝑐

2
sig𝑦1 (𝑒) , (49)

where 𝑐
1
and 𝑐

2
are set as positive constants and 0 < 𝑦

1
< 1.

The constant rate reaching law is chosen as

̇𝑠 = −𝜀 sgn (𝑠) , 𝜀 > 0. (50)

Taking the time derivative on both sides of (49) and
substituting (9), (10), and (49) into (50), the conventional
sliding mode control input can be obtained as

𝑢SMC = −𝑐
1
̇𝑒 − 𝑐

2
𝑦
1
|𝑒|

𝑦1−1

̇𝑒 − 𝜀 sgn (𝑠) +
...
𝜃
𝑑
+

𝑘
𝑖

𝑘
𝑝

̈
𝜃
(1−𝜆)

. (51)

The integral-order sliding surface of 2NTSMC is designed
as follows:

𝑠 (𝑡) = ̇𝑒 + 𝑐
3
𝑒 + 𝑐

4
sig𝑦2 (𝑒) . (52)

Taking the second derivatives with respect to time on
both sides of (52) and substituting (9), (10), and (52) into (17)
and (20), the control input of 2NTSMC can be gotten as

𝑢
2NTSMC = −

𝑞

𝛽𝑝

[𝜙𝜎 + 𝛾𝜎
𝑚/𝑛

+ (1 +

𝛼𝑔

ℎ

𝑠
𝑔/ℎ−1

) ̇𝑠
2−𝑝/𝑞

]

− Λ


− 𝑑 (𝑡) ,

(53)

where

Λ


= 𝑐
3
̈𝑒 + 𝑐

4
𝐸 − (

...
𝜃
𝑑
+

𝑘
𝑖

𝑘
𝑝

̈
𝜃
(1−𝜆)

) ,

𝐸 = 𝑦
2
(𝑦

2
− 1) sig𝑦2−2 (𝑒) ̇𝑒

2

+ 𝑦
2
|𝑒|

𝑦2−1

̈𝑒.

(54)

The following control parameters are all tuned with the
optimal integrated time absolute error (ITAE) criterion.

For the nominal system, the optimal control parameters
in (51) are selected as 𝑐

1
= 78.48, 𝑐

2
= 0.84, 𝑦

1
= 190.71, and

𝜀 = 95.81. The optimal integral-order 2NTSMC (I2NTSMC)
parameters in (53) are selected as 𝑝 = 5, 𝑞 = 3, 𝑔 = 7, ℎ = 3,
𝑚 = 1, 𝑛 = 3, 𝑐

3
= 179.77, 𝑐

4
= 59.78, 𝑦

2
= 6.53, 𝛼 = 80.32,

𝛽 = 6.95, 𝜙 = 73.99, and 𝛾 = 59.62. Simulation results are
shown in Figure 3, respectively.

Figure 3 displays time diagrams of position tracking
performance, tracking errors, sliding surfaces, control inputs,
and current 𝑖∗

𝑞
, respectively. The PMSM system controlled

by both I2NTSM and ITSM controllers is stable. The con-
trol input 𝑢

2NTSMC is continuous and chattering-free from
Figure 3(d). In comparison with the ITSMC, the I2NTSMC
can improve the transient performance substantially and offer
higher tracking precision as seen in Figures 3(a), 3(b) and
3(c). It is because that I2NTSMC combines advantages of
ITSMC and those of second-order SMC, which increases the
convergence rate of the PMSMsystem and tracking precision.

5.2. Simulation of ITSMC and FTSMC. For comparison
between ITSMC and FTSMC, we design the following frac-
tional order sliding surface as

𝑠 = 𝐷
𝑟

̇𝑒 + 𝑐
3
𝑒 + 𝑐

4
sig𝑦2 (𝑒) . (55)
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Figure 7: SMDO-based F2NTSMC for the system with 𝑑(𝑡). (a) Position tracking performance, (b) tracking errors, (c) sliding surfaces, (d)
control inputs, (e) current 𝑖∗

𝑞
, and (f) lumped disturbances and their estimation values.
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Figure 8: Robustness of SMDO-based F2NTSMC for the PMSM system with 𝑑(𝑡). (a) Position tracking performance, (b) current 𝑖∗
𝑞
, and (c)

the lumped disturbances and their estimation.

Taking the time derivative on both sides of (53) and
substituting (9), (10), and (55) into (50), the fractional-order
sliding mode control input is obtained as

𝑢FSMC = − 𝐷
1−𝑟

(𝑐
3
̇𝑒 + 𝑐

4
𝑧
2
|𝑒|

𝑦2−1

̇𝑒 + 𝜀 sgn (𝑠))

+

...
𝜃
𝑑
+

𝑘
𝑖

𝑘
𝑝

̈
𝜃
(1−𝜆)

,

(56)

where 𝑟 = 0.23, 𝑐
3
= 70.57, 𝑐

4
= 0.11, 𝑦

2
= 9.49, and 𝜀 =

76.03.
The simulation results are presented in Figure 4 and

demonstrate that the FTSMC has better performance of
faster and higher tracking precision. However, the chattering
phenomenon remains during the FTSMC process as shown
in Figure 4(d).The position tracking performance of FTSMC
and ITSMC is given in Figure 4(a). It can be seen from
Figures 4(b) and 4(c) that tracking errors of FTSMC reach
zero within finite time, but the convergence rate of ITSMC is

far too slow. Furthermore, less chattering occurs during the
FTSMC process than ITSMC according to Figures 4(d) and
4(e).

5.3. Simulation of I2NTSMC and F2NTSMC. In order to fur-
ther accelerate the convergence rate and eliminate chattering
effect, we adopt F2NTSMC combining 2NTSMCwith FSMC.
The control scheme takes advantages of less chattering of
2NTSMC and faster convergence rate, more precise tracking
of FSMC.

The optimum parameters of F2NTSMC without 𝑑(𝑡) in
(22) are 𝑝 = 5, 𝑞 = 3, 𝑔 = 7, ℎ = 3, 𝑚 = 1, 𝑛 = 3, 𝑟 = 0.069,
𝑏
1
= 0.88, 𝑏

2
= 3.19, 𝑧 = 2.57, 𝛼 = 4.38, 𝛽 = 0.0017, 𝜙 = 5.04,

and 𝛾 = 3.60, respectively.
It is noticed from Figures 5(d) and 5(e) that there is

neither singularity nor chattering during the F2NTSMC
process. The actual position tracks the desired reference
value more quickly than in the cases of I2NTSMC as seen
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in Figures 5(a), 5(b), and 5(c). To sum up, the F2NTSMC is
better than the 2NTSMC.

5.4. Simulation of SMDO-Based F2NTSMC

5.4.1. SMDO-Based F2NTSMC for the Model with 𝑑(𝑡). The
block diagram of the proposed SMDO-based F2NTSMC
method is shown in Figure 6.

The position tracking control of the PMSM system
with parameter uncertainties and external disturbances is
considered.The optimal parameters of the F2NTSMC in (37)
are calculated as 𝑟 = 0.30, 𝑏

1
= 0.81, 𝑏

2
= 1.61, 𝑧 = 6.16,

𝛼 = 1.04, 𝛽 = 0.0039, 𝜙 = 10.92, and 𝛾 = 2.73 and other
parameters are as same as ones of F2NTSMC without 𝑑(𝑡).
The optimal parameters of SMDO are given by 𝑘

𝑜1
= 1257.21

and 𝑘
𝑜2
= 819.61.

Simulation results are illustrated in Figure 7.The SMDO-
based F2NTSMC shows excellent tracking performance
depicted in Figure 7(a). The position errors and sliding sur-
face 𝑠 converge to the equilibriumpoints in finite time in spite
of lumped disturbances including parameter uncertainties
and external disturbances as seen from Figures 7(b) and 7(c),
respectively.

The tracking performance of the F2NTSMC without
SMDO is deteriorated due to too big lumped disturbances.
Therefore, SMDO is applied to realize estimation and com-
pensation in order to improve control performance and
increase robustness of the system. From Figure 7(f), we can
see that lumped disturbances can be effectively estimated.
Moreover, Figures 7(d) and 7(e) demonstrate that the chat-
tering phenomenon becomes effectively weakened.

5.4.2. Robustness of SMDO-Based F2NTSMC. In order to
verify the robustness of SMDO, the disturbance simulation is
carried out. Figure 8 shows the system response as the load
disturbances vary from 0N⋅m to 2.5N⋅m during the time
range [1, 1.001] sec and from 0N⋅m to −2.5N⋅m during the
time range [2, 2.001] sec.

The parameters of SMDO-based F2NTSMC are set as
same as ones in Section 5.4.1. Figures 8(a) and 8(b) show the
stability and robustness of SMDO-based F2NTSMCmethod.
Figure 8(c) demonstrates that the SMDO can primely track
the lumped disturbances.

6. Conclusion

In this paper, a SMDO-based F2NTSMC with strong robust-
ness is developed to solve the position tracking control prob-
lem for the PMSM system in spite of parameter uncertainties
and external disturbances. Simulation results show that the
closed-loop system under the proposed F2NTSMC method
has achieved fast convergence and high tracking precision.
To further improve the disturbance rejection ability, SMDO
is introduced to estimate and make compensation for the
lumped disturbances. The combination of F2NTSMC and
SMDO can obtain strong robustness and good dynamic
performance. Simulation results have demonstrated the effec-
tiveness and superiority of the proposed method.
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