744 research outputs found

    Adaptive Multilevel Monte Carlo Methods for Stochastic Variational Inequalities

    Get PDF
    While multilevel Monte Carlo (MLMC) methods for the numerical approximation of partial differential equations with random coefficients enjoy great popularity, combinations with spatial adaptivity seem to be rare. We present an adaptive MLMC finite element approach based on deterministic adaptive mesh refinement for the arising “pathwise” problems and outline a convergence theory in terms of desired accuracy and required computational cost. Our theoretical and heuristic reasoning together with the efficiency of our new approach are confirmed by numerical experiments

    Multilevel Sparse Grid Methods for Elliptic Partial Differential Equations with Random Coefficients

    Full text link
    Stochastic sampling methods are arguably the most direct and least intrusive means of incorporating parametric uncertainty into numerical simulations of partial differential equations with random inputs. However, to achieve an overall error that is within a desired tolerance, a large number of sample simulations may be required (to control the sampling error), each of which may need to be run at high levels of spatial fidelity (to control the spatial error). Multilevel sampling methods aim to achieve the same accuracy as traditional sampling methods, but at a reduced computational cost, through the use of a hierarchy of spatial discretization models. Multilevel algorithms coordinate the number of samples needed at each discretization level by minimizing the computational cost, subject to a given error tolerance. They can be applied to a variety of sampling schemes, exploit nesting when available, can be implemented in parallel and can be used to inform adaptive spatial refinement strategies. We extend the multilevel sampling algorithm to sparse grid stochastic collocation methods, discuss its numerical implementation and demonstrate its efficiency both theoretically and by means of numerical examples

    Adaptive Multilevel Monte Carlo Methods for Random Elliptic Problems

    Get PDF
    In this thesis we introduce a novel framework for uncertainty quantification in problems with random coefficients. The developed framework utilizes the ideas of multilevel Monte Carlo (MLMC) methods and allows for exploiting the advantages of adaptive finite element techniques. In contrast to the standard MLMC method, where levels are characterized by a hierarchy of uniform meshes, we associate the MLMC levels with a chosen sequence of tolerances. Each deterministic problem corresponding to a MC sample on a given level is then approximated up to the corresponding accuracy. This can be done, for example, using pathwise a posteriori error estimation and adaptive mesh refinement techniques. We further introduce an adaptive MLMC finite element method for random linear elliptic problems based on a residual-based a posteriori error estimation technique. We provide a careful analysis of the novel method based on a generalization of existing results, for deterministic residual-based error estimation, to the random setting. We complement our theoretical results by numerical simulations illustrating the advantages of our approach compared to the standard MLMC finite element method when applied to problems with random singularities

    A fully adaptive multilevel stochastic collocation strategy for solving elliptic PDEs with random data

    Full text link
    We propose and analyse a fully adaptive strategy for solving elliptic PDEs with random data in this work. A hierarchical sequence of adaptive mesh refinements for the spatial approximation is combined with adaptive anisotropic sparse Smolyak grids in the stochastic space in such a way as to minimize the computational cost. The novel aspect of our strategy is that the hierarchy of spatial approximations is sample dependent so that the computational effort at each collocation point can be optimised individually. We outline a rigorous analysis for the convergence and computational complexity of the adaptive multilevel algorithm and we provide optimal choices for error tolerances at each level. Two numerical examples demonstrate the reliability of the error control and the significant decrease in the complexity that arises when compared to single level algorithms and multilevel algorithms that employ adaptivity solely in the spatial discretisation or in the collocation procedure.Comment: 26 pages, 7 figure

    Multilevel quasi-Monte Carlo for random elliptic eigenvalue problems I: Regularity and error analysis

    Full text link
    Random eigenvalue problems are useful models for quantifying the uncertainty in several applications from the physical sciences and engineering, e.g., structural vibration analysis, the criticality of a nuclear reactor or photonic crystal structures. In this paper we present a simple multilevel quasi-Monte Carlo (MLQMC) method for approximating the expectation of the minimal eigenvalue of an elliptic eigenvalue problem with coefficients that are given as a series expansion of countably-many stochastic parameters. The MLQMC algorithm is based on a hierarchy of discretisations of the spatial domain and truncations of the dimension of the stochastic parameter domain. To approximate the expectations, randomly shifted lattice rules are employed. This paper is primarily dedicated to giving a rigorous analysis of the error of this algorithm. A key step in the error analysis requires bounds on the mixed derivatives of the eigenfunction with respect to both the stochastic and spatial variables simultaneously. An accompanying paper [Gilbert and Scheichl, 2021], focusses on practical extensions of the MLQMC algorithm to improve efficiency, and presents numerical results
    • …
    corecore