789 research outputs found

    Adaptive Multi-Input Multi-Output Fading Channel Equalization using Kalman Estimation

    Get PDF
    his paper addresses the problem of adaptive channel tracking and equalization for multi-input multi-output (MIMO) time-variant frequency-selective channels. A finite-length minimum-mean-squared-error decision-feedback equalizer (MMSE-DFE) performs the equalization task, while a Kalman filter tracks the MIMO channel, which models the corrupting effects of inter-symbol interference (ISI), inter-user interference (IUI), and noise. The Kalman tracking is aided by previous hard decisions produced by the DFE, with a decision delay ~ > 0, which causes the Kalman filter to track the channel with a delay. A channel prediction module bridges the time gap between the channel estimates produced by the Kalman filter and those needed for the DFE adaptation. The proposed algorithm offers good tracking behavior for multi-user fading ISI channels at the expense of higher complexity. Download the full articl

    Radial Basis Function Aided Space-Time Equalization in Dispersive Fading Uplink Environments

    No full text
    A novel Radial Basis Function Network (RBFN) assisted Decision-Feedback aided Space-Time Equalizer (DF-STE) designed for receivers employing multiple antennas is proposed. The Bit Error Rate (BER) performance of the RBFN aided DF-STE is evaluated when communicating over correlated Rayleigh fading channels, whose Channel Impulse Response (CIR) is estimated using a Kalman filtering based channel estimator. The proposed receiver structure outperforms the linear Minimum Mean-Squared Error benchmarker and it is less sensitive to both error propagation and channel estimation errors

    Interference suppression and parameter estimation in wireless communication systems over time-varing multipath fading channels

    Get PDF
    This dissertation focuses on providing solutions to two of the most important problems in wireless communication systems design, namely, 1) the interference suppression, and 2) the channel parameter estimation in wireless communication systems over time-varying multipath fading channels. We first study the interference suppression problem in various communication systems under a unified multirate transmultiplexer model. A state-space approach that achieves the optimal realizable equalization (suppression of inter-symbol interference) is proposed, where the Kalman filter is applied to obtain the minimum mean squared error estimate of the transmitted symbols. The properties of the optimal realizable equalizer are analyzed. Its relations with the conventional equalization methods are studied. We show that, although in general a Kalman filter has an infinite impulse response, the Kalman filter based decision-feedback equalizer (Kalman DFE) is a finite length filter. We also propose a novel successive interference cancellation (SIC) scheme to suppress the inter-channel interference encountered in multi-input multi-output systems. Based on spatial filtering theory, the SIC scheme is again converted to a Kalman filtering problem. Combining the Kalman DFE and the SIC scheme in series, the resultant two-stage receiver achieves optimal realizable interference suppression. Our results are the most general ever obtained, and can be applied to any linear channels that have a state-space realization, including time-invariant, time-varying, finite impulse response, and infinite impulse response channels. The second half of the dissertation devotes to the parameter estimation and tracking of single-input single-output time-varying multipath channels. We propose a novel method that can blindly estimate the channel second order statistics (SOS). We establish the channel SOS identifiability condition and propose novel precoder structures that guarantee the blind estimation of the channel SOS and achieve diversities. The estimated channel SOS can then be fit into a low order autoregressive (AR) model characterizing the time evolution of the channel impulse response. Based on this AR model, a new approach to time-varying multipath channel tracking is proposed

    Estimation of FBMC/OQAM Fading Channels Using Dual Kalman Filters

    Get PDF
    We address the problem of estimating time-varying fading channels in filter bank multicarrier (FBMC/OQAM) wireless systems based on pilot symbols. The standard solution to this problem is the least square (LS) estimator or the minimum mean square error (MMSE) estimator with possible adaptive implementation using recursive least square (RLS) algorithm or least mean square (LMS) algorithm. However, these adaptive filters cannot well-exploit fading channel statistics. To take advantage of fading channel statistics, the time evolution of the fading channel is modeled by an autoregressive process and tracked by Kalman filter. Nevertheless, this requires the autoregressive parameters which are usually unknown. Thus, we propose to jointly estimate the FBMC/OQAM fading channels and their autoregressive parameters based on dual optimal Kalman filters. Once the fading channel coefficients at pilot symbol positions are estimated by the proposed method, the fading channel coefficients at data symbol positions are then estimated by using some interpolation methods such as linear, spline, or low-pass interpolation. The comparative simulation study we carried out with existing techniques confirms the effectiveness of the proposed method

    Estimation of FBMC/OQAM Fading Channels Using Dual Kalman Filters

    Get PDF
    We address the problem of estimating time-varying fading channels in filter bank multicarrier (FBMC/OQAM) wireless systems based on pilot symbols. The standard solution to this problem is the least square (LS) estimator or the minimum mean square error (MMSE) estimator with possible adaptive implementation using recursive least square (RLS) algorithm or least mean square (LMS) algorithm. However, these adaptive filters cannot well-exploit fading channel statistics. To take advantage of fading channel statistics, the time evolution of the fading channel is modeled by an autoregressive process and tracked by Kalman filter. Nevertheless, this requires the autoregressive parameters which are usually unknown. Thus, we propose to jointly estimate the FBMC/OQAM fading channels and their autoregressive parameters based on dual optimal Kalman filters. Once the fading channel coefficients at pilot symbol positions are estimated by the proposed method, the fading channel coefficients at data symbol positions are then estimated by using some interpolation methods such as linear, spline, or low-pass interpolation. The comparative simulation study we carried out with existing techniques confirms the effectiveness of the proposed method
    • …
    corecore