7,173 research outputs found

    Uncertainty Aware Learning from Demonstrations in Multiple Contexts using Bayesian Neural Networks

    Get PDF
    Diversity of environments is a key challenge that causes learned robotic controllers to fail due to the discrepancies between the training and evaluation conditions. Training from demonstrations in various conditions can mitigate---but not completely prevent---such failures. Learned controllers such as neural networks typically do not have a notion of uncertainty that allows to diagnose an offset between training and testing conditions, and potentially intervene. In this work, we propose to use Bayesian Neural Networks, which have such a notion of uncertainty. We show that uncertainty can be leveraged to consistently detect situations in high-dimensional simulated and real robotic domains in which the performance of the learned controller would be sub-par. Also, we show that such an uncertainty based solution allows making an informed decision about when to invoke a fallback strategy. One fallback strategy is to request more data. We empirically show that providing data only when requested results in increased data-efficiency.Comment: Copyright 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    A Novel Predictive-Coding-Inspired Variational RNN Model for Online Prediction and Recognition

    Get PDF
    This study introduces PV-RNN, a novel variational RNN inspired by the predictive-coding ideas. The model learns to extract the probabilistic structures hidden in fluctuating temporal patterns by dynamically changing the stochasticity of its latent states. Its architecture attempts to address two major concerns of variational Bayes RNNs: how can latent variables learn meaningful representations and how can the inference model transfer future observations to the latent variables. PV-RNN does both by introducing adaptive vectors mirroring the training data, whose values can then be adapted differently during evaluation. Moreover, prediction errors during backpropagation, rather than external inputs during the forward computation, are used to convey information to the network about the external data. For testing, we introduce error regression for predicting unseen sequences as inspired by predictive coding that leverages those mechanisms. The model introduces a weighting parameter, the meta-prior, to balance the optimization pressure placed on two terms of a lower bound on the marginal likelihood of the sequential data. We test the model on two datasets with probabilistic structures and show that with high values of the meta-prior the network develops deterministic chaos through which the data's randomness is imitated. For low values, the model behaves as a random process. The network performs best on intermediate values, and is able to capture the latent probabilistic structure with good generalization. Analyzing the meta-prior's impact on the network allows to precisely study the theoretical value and practical benefits of incorporating stochastic dynamics in our model. We demonstrate better prediction performance on a robot imitation task with our model using error regression compared to a standard variational Bayes model lacking such a procedure.Comment: The paper is accepted in Neural Computatio

    Information driven self-organization of complex robotic behaviors

    Get PDF
    Information theory is a powerful tool to express principles to drive autonomous systems because it is domain invariant and allows for an intuitive interpretation. This paper studies the use of the predictive information (PI), also called excess entropy or effective measure complexity, of the sensorimotor process as a driving force to generate behavior. We study nonlinear and nonstationary systems and introduce the time-local predicting information (TiPI) which allows us to derive exact results together with explicit update rules for the parameters of the controller in the dynamical systems framework. In this way the information principle, formulated at the level of behavior, is translated to the dynamics of the synapses. We underpin our results with a number of case studies with high-dimensional robotic systems. We show the spontaneous cooperativity in a complex physical system with decentralized control. Moreover, a jointly controlled humanoid robot develops a high behavioral variety depending on its physics and the environment it is dynamically embedded into. The behavior can be decomposed into a succession of low-dimensional modes that increasingly explore the behavior space. This is a promising way to avoid the curse of dimensionality which hinders learning systems to scale well.Comment: 29 pages, 12 figure
    • …
    corecore