86 research outputs found

    Enabling self-directed computer use for individuals with cerebral palsy: a systematic review of available assistive devices and technologies

    Get PDF
    Aim  The purpose of this study was to systematically review published evidence on the development, use, and effectiveness of devices and technologies that enable or enhance self-directed computer access by individuals with cerebral palsy (CP). Methods  Nine electronic databases were searched using keywords ‘computer’, ‘software’, ‘spastic’, ‘athetoid’, and ‘cerebral palsy’; the reference lists of articles thus identified were also searched. Thirty articles were selected for review, with 23 reports of development and usability testing of devices and seven evaluations of algorithms to increase computer recognition of input and cursor movements. Results  Twenty-four studies had fewer than 10 participants with CP, with a wide age range of 5 to 77 years. Computer task performance was usually tested, but only three groups sought participant feedback on ease and comfort of use. International standards exist to evaluate effectiveness of non-keyboard devices, but only one group undertook this testing. None of the study designs were higher than American Academy for Cerebral Palsy and Developmental Medicine level IV. Interpretation  Access solutions for individuals with CP are in the early stages of development. Future work should include assessment of end-user comfort, effort, and performance as well as design features. Engaging users and therapists when designing and evaluating technologies to enhance computer access may increase acceptance and improve performance

    Classification of clinical outcomes using high-throughput and clinical informatics.

    Get PDF
    It is widely recognized that many cancer therapies are effective only for a subset of patients. However clinical studies are most often powered to detect an overall treatment effect. To address this issue, classification methods are increasingly being used to predict a subset of patients which respond differently to treatment. This study begins with a brief history of classification methods with an emphasis on applications involving melanoma. Nonparametric methods suitable for predicting subsets of patients responding differently to treatment are then reviewed. Each method has different ways of incorporating continuous, categorical, clinical and high-throughput covariates. For nonparametric and parametric methods, distance measures specific to the method are used to make classification decisions. Approaches are outlined which employ these distances to measure treatment interactions and predict patients more sensitive to treatment. Simulations are also carried out to examine empirical power of some of these classification methods in an adaptive signature design. Results were compared with logistic regression models. It was found that parametric and nonparametric methods performed reasonably well. Relative performance of the methods depends on the simulation scenario. Finally a method was developed to evaluate power and sample size needed for an adaptive signature design in order to predict the subset of patients sensitive to treatment. It is hoped that this study will stimulate more development of nonparametric and parametric methods to predict subsets of patients responding differently to treatment

    Temporal integration of loudness as a function of level

    Get PDF

    Temporal integration of loudness as a function of level

    Full text link

    Exploiting Spatio-Temporal Coherence for Video Object Detection in Robotics

    Get PDF
    This paper proposes a method to enhance video object detection for indoor environments in robotics. Concretely, it exploits knowledge about the camera motion between frames to propagate previously detected objects to successive frames. The proposal is rooted in the concepts of planar homography to propose regions of interest where to find objects, and recursive Bayesian filtering to integrate observations over time. The proposal is evaluated on six virtual, indoor environments, accounting for the detection of nine object classes over a total of ∼ 7k frames. Results show that our proposal improves the recall and the F1-score by a factor of 1.41 and 1.27, respectively, as well as it achieves a significant reduction of the object categorization entropy (58.8%) when compared to a two-stage video object detection method used as baseline, at the cost of small time overheads (120 ms) and precision loss (0.92).</p

    Mathematical linguistics

    Get PDF
    but in fact this is still an early draft, version 0.56, August 1 2001. Please d
    • …
    corecore