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ABSTRACT 

CLASSIFICATION OF CLINICAL OUTCOMES USING HIGH-THROUGHPUT 

AND CLINICAL INFORMATICS 

Alexander C. Cambon 

November 19, 2014 

It is widely recognized that many cancer therapies are effective only for a subset of patients. 

However clinical studies are most often powered to detect an overall treatment effect. To address 

this issue, classification methods are increasingly being used to predict a subset of patients which 

respond differently to treatment. This study begins with a brief history of classification methods 

with an emphasis on applications involving melanoma. Nonparametric methods suitable for 

predicting subsets of patients responding differently to treatment are then reviewed. Each method 

has different ways of incorporating continuous, categorical, clinical and high-throughput 

covariates. For nonparametric and parametric methods, distance measures specific to the method 

are used to make classification decisions. Approaches are outlined which employ these distances 

to measure treatment interactions and predict patients more sensitive to treatment. Simulations are 

also carried out to examine empirical power of some of these classification methods in an 

adaptive signature design. Results were compared with logistic regression models. It was found 

that parametric and nonparametric methods performed reasonably well. Relative performance of 

the methods depends on the simulation scenario. Finally a method was developed to evaluate 

power and sample size needed for an adaptive signature design in order to predict the subset of 

patients sensitive to treatment. It is hoped that this study will stimulate more development of 

nonparametric and parametric methods to predict subsets of patients responding differently to 

treatment.  
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NONPARAMETRIC CLASSIFICATION METHODS  

 

1. Introduction  

Overview of Nonparametric Classification Methods 

Classification is a subset of what Hastie, Tibshirani, & Friedman (2009 [75]) term the 

statistical learning field, and what Bishop (2006 [10]) refers to as pattern recognition or machine 

learning. Statistical learning can further be divided into two categories, supervised learning and 

unsupervised learning, as shown in Figure 1. “It is called ‘supervised’ because of the presence of 

the outcome variable to guide the learning process. In the unsupervised learning problem, we 

observe only the features and have no measurements of the outcome.” (Hastie et al., 2009 [75]).  

In language often used in machine learning or pattern recognition, supervised learning 

methods have both inputs and outputs. Pattern recognition uses the term features for inputs. In the 

statistical field, the outputs are referred to as the outcome, response, or dependent variables, and 

the inputs are covariates, explanatory variables, or independent variables. These covariates can be 

high dimensional, such as genomic data, or low dimensional, such as age, gender, ethnicity, 

tumor thickness, or presence of ulceration.  

 

 

 

 

 

 



2 
 

 

Figure 1: Flowchart showing subdivisions of statistical learning methods. 

As seen in Figure 1, supervised learning can then be further subdivided into classification 

(modeling and predicting of categorical outcomes), and regression (modeling and prediction of 

continuous outcome variables). In classification, the categorical outcomes are the class labels 

which the classification method is predicting. However regression methods are also often 

included as a step in the classification process.  
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Figure 2: Flowchart of Classification Process. Steps shown separately such as dimension reduction and 
model building may be part of the same step. 

Figure 2 shows a high level flowchart of the classification process. Model building is done on 

the training set, and prediction error assessed on the validation set. To prevent over fitting during 

model building, the training set itself is often divided up into nested training and validation steps. 

Within each paired training and validation set, the training and validation portions are usually 

non-overlapping.  

The roots of discriminant analysis, a class of methods used to separate labeled groups of 

objects using covariates, date back to well before 1936, when Mahalanobis published his work on 

the “generalized distance” (1936 [111]), and Fisher published a closely related method, using the 
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same distance, to discriminate between species of iris (1936 [48]). Ensuing developments in 

nonparametric classification include K Nearest Neighbors (KNN) and Kernel Density Analysis 

(KDA) used for classification, both proposed by Fix & Hodges (1951 [49]).  

These earlier methods were developed before the proliferation of high-throughput data 

(HTD), such as genomic or proteomic data. HTD typically have thousands or more of features, 

together with sample sizes on the order of 100 or less. This situation is often referred to as 

p n  where p refers to the features and n  refers to the sample size of subjects. The early 

methods cannot handle p n  data without dimension reduction (DR) methods. Many DR 

methods have been originated for HTD to address this situation. Additional classification 

methods such as Random Forests (Breiman, 1999 [17]), Support Vector Machines (Boser, Buyon, 

& Vapnik, 1992 [12]) and Boosting (Freund & Schapire, 1995 [56]) have built-in (embedded) DR 

techniques. At the same time many of the earlier developed classification methods, when used in 

conjunction with DR techniques, compare favorably to these more recently developed methods. 

For example KNN outperformed Boosting and Random Forests in a comparison of methods by 

Dudoit, Fridlyand, & Speed (2002 [39]) involving genomic data.  

Some Early Uses of Genomic Data, Clustering, and Classification 

In the late 1990’s and early 2000’s unsupervised methods were used to show that genomic 

data could be used not only to identify known classes but also to identify or predict new classes. 

Golub et al. (1999 [66]) developed a method involving clustering and weighted voting of 

“informative” genes for cancer classification. Their results pointed in the direction of “a general 

strategy for discovering and predicting cancer classes for other types of cancer, independent of 

previous biological knowledge”. This method was able to discriminate between two types of 

leukemia. Treatment regimens could then be targeted to the type of leukemia if it were known.  
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Development of Medical and Statistical Classification Methods in Melanoma 

Following closely after the work of Golub et al. (1999 [66]), Bittner et al. (2000 [11]) applied 

clustering and multiple dimensional scaling (MDS) to a melanoma study and found that gene 

expression patterns correlated by specific subsets of melanomas. This finding pointed toward the 

possibility of classification of melanoma based on gene expression. It was only more recently that 

the prognostic  system for melanoma as defined by the American Joint Committee on Cancer or 

AJCC (Balch et al., 2009 [5]) officially added mitotic rate to the other prognostic variables. 

Although no molecular marker was included with this latest update (Duncan, 2009 [40]), the 

addition of mitotic rate to the AJCC Index in 2009 was seen as evidence of “heightened interest 

in the utility of molecular markers” for melanoma (Segura et al., 2010 [147]). However, although 

factors such as number of metastatic nodes and tumor thickness explain “tremendous 

heterogeneity of prognosis among patients with stage III melanoma” (Balch et al., 2010 [6]), 

Duncan (2009 [40]) and Balch et al. (2004 [4]) pointed out that the AJCC melanoma cancer 

classification system “is a tumor-node-metastasis (TNM) based clinical and histologic scheme 

that segregates patients into prognostic categories that are not correlated with any specific 

therapeutic response”. Duncan further stated that “integration of the genomic and clinical 

pathologic schemes may provide a future classification scheme that segregates tumors by 

predicted outcome and potential response to specific therapy.” 

The earlier classification systems for melanoma, as in other fields, underwent an evolution. 

Table 1 of the Rigel, Russak, & Friedman study (2010 [133]) showed the primary diagnosis of 

melanoma was, before the 1980’s confined to gross features such as bleeding ulceration, but 

progressed to use of subsurface features in the 1990’s and eventually to digital and subcellular 

feature after the turn of the century. The ABCD (asymmetry, border, color, differential structure) 

system was developed in the United States by Friedman, Rigel, & Kopf (1985 [61]) for self-

examination and early detection. The 7-Point Checklist was also devised in the same year in the 

United Kingdom by MacKie (1985 [109]). It was based on seven features: sensory change, 
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diameter >1 cm, lesion growth, irregular edge, irregular pigmentation, inflammation, and 

crusting/oozing/bleeding. Argenziano et al. (1998 [3]) compared a 7-Point Checklist system 

based on simplified epiluminescence microscopy (ELM) pattern analysis  to ABCD and found it 

improved sensitivity and specificity and required less experience to use. Henning et al. (2007 

[77]) introduced the CASH system (color, architecture, symmetry, and homogeneity).  

The 1990’s and especially the 2000’s decade saw increasing use of learning methods to 

distinguish melanoma tumors based on shape and other characteristics. For example, Claridge, 

Hall, Keefe, & Allen (1992 [28]) used shape analysis to classify melanoma, and Ercal, Chawla, 

Stoecker, Lee, & Moss (1994 [45]) used a machine learning method to distinguish melanoma 

from benign tumors using shape and relative tumor color. The more recent work by Lee & 

Claridge (2005 [100]) introduced the predictive power of the Irregularity Index in the diagnosis of 

malignant melanoma. Table 1 of the Rigel et al. study (2010 [133]) also identified systems 

including image analysis and pattern recognition in the 2000’s. Table 2 of the same study 

compared sensitivity, specificity, and diagnostic accuracy of various dermoscopy diagnostic 

algorithms. MelaFind, a “noninvasive and objective computer-vision system designed to aid in 

detection of early pigmented cutaneous melanoma” (Monheit et al., 2011 [114]) was approved for 

use by the U.S. Food and Drug Administration (FDA) after a successful prospective phase III 

clinical trial. The last 10 to 15 years has also seen a proliferation of research incorporating 

genomic as well as genetic data for use in classification of melanoma. The  findings by Viros et 

al. (2008 [166]) incorporated mutation status of oncogenes BRAF and NRAS along with 

histological features, and showed the BRAF mutations correlated well with morphological 

features and found that there were “significant survival benefit… for patients who, based on their 

age, were predicted to have BRAF mutant melanomas in 69% of the cases”. In the previously 

cited Segura et al. work (2010 [147]), a microRNA (miRNA) signature was developed “whose 

overexpression was significantly correlated with longer survival”. Several learning methods were 

used in this study including Nearest Shrunken Centroids or NSC (Tibshirani, Hastie, Narasimhan, 
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& Chu, 2003 [161]), Support Vector Machines (SVM), Adaboost with classification trees (Freund 

& Schachter, 1996 [57]), and Random Forests. This study also incorporated Pre-validation (PV), 

developed by Tibshirani & Efron (2002 [159]), to compare the added value of genomic covariates 

in classifiers using traditional prognostic indicators.  

Use of Classification to Predict a Subset of Patients by Identifying Sources of Heterogeneity 

Treatments specific to melanoma and applicable to a subset of patients have more recently 

been coming onto market. For example, subsequent to the findings in Viros et al. (2008 [166]), a 

treatment Vemurafenib, for a subset of patients having melanoma with BRAF V600e mutations 

(Chapman et al., 2011 [24]) was approved by the FDA. In the year prior, Ipilimumab was 

approved by the FDA for treatment of metastatic melanoma (Hodi et al., 2010 [79]). Saenger & 

Wochok (2009 [139]) had previously shown that heterogeneity is present in patient response to 

Ipilimumab. Moreover Freidlin, Jiang, & Simon (2010 [55]) stated that “due to the molecular 

heterogeneity of most human cancers, only a subset of treated patients benefit from a given 

therapy. This is particularly relevant for the new generation of anticancer agents that target 

specific molecular pathways.” At the same time, relapse of patients or a subset of patients under 

these new treatments remains a challenge. Treatment combinations are one avenue being 

explored (Tuma, 2012 [162], and Vanneman & Dranoff, 2012 [163]). As pointed out by Freidlin 

et al. (2010 [55]), “Genomic … technologies … provide powerful tools for identifying a genetic 

signature for patients who are most likely to benefit from a targeted agent”.  

Purpose of Chapter 

The purpose of this study is to carefully review and examine nonparametric classification 

methods in order to understand and best use these methods for treatment subset prediction. Each 

method uses a measure of distance to make classification decisions. Proper understanding of these 

classification-specific distances facilitates their use in prediction of sensitive patients. 
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Organization of Chapter 

The remainder of this chapter is organized as follows: Section 2 addresses notation and 

definitions. Section 3 covers nested cross validation methods to estimate and reduce prediction 

error. Section 4 outlines nonparametric DR methods for classification. Nonparametric 

classification methods are in Section 5. Section 6 highlights generalizability of classification 

methods. Discussion and conclusions are in the penultimate section, and Section 8 highlights 

challenges and future directions. 

2. Notation and Definitions 

Subscripts D and V denote training and validation sets respectively, and nD and nV denote 

their sample sizes; iy  denotes a categorical or a continuous response for the ith subject, 

1,..., ;  .D Vi n n n n    However when class is the outcome variable, then 1ig   denotes the 

disease or relapsed class, and 0 or -1ig   denotes the other class; covariate vectors

1 2{ , ,..., }i i i imx x xx and 1 2{ , ,..., },i i i iz z zz  where p m  , denote respectively the clinical 

and high-dimensional covariate vectors for the i
th subject. The covariate vector for the ith subject 

is then{ , }i ix z , and the vector for the ith subject consists of the class-covariate vector pairing

{ ,{ , }},  1,...,i i i Dg i nx z . In the training set ˆ
k  denotes the average of the kth  feature, ˆ

gk  

denotes the average of feature k  for class g, and ˆ
gtk  denotes the average of feature k  for class 

g and treatment arm t, where 1t   denotes an enhanced treatment, and 0t   denotes standard 

treatment or control. 

The term feature refers either to covariates or functions of covariates. For example in the 

model 1 1( ) log( ), i 0 iE Y x   the term 1log( )ix  is used in place of the identity term and is 

therefore both a covariate and a feature. However in the equation:

1 1 2 2( ) log( ),i 0 i iE Y x x      the term 1log( )ix  is used in addition to the identity term and is 

therefore only a feature. Features may also be functions of several covariates. For example, in the 
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equation 0 1 1 2 2 1 1( ) ... ,i i i m im i iE Y x x x z z            a Feature Extraction (FE) 

method could extract a smaller number of features from the covariates.  

The term interaction refers to a statistical interaction. A statistical interaction between two 

features indicates that the effect of one feature on the response depends on the level of the other 

feature. Higher-order interactions are interactions between more than two features. Epistasis 

refers to situations in which gene interactions are present while the corresponding main effects 

are small. Cordell (2009 [19]) provides an in-depth review of gene-gene interactions. Table 1 

provides a list of acronyms, together with definitions and sections where they are used. 

Table 1:  List of acronyms, definitions, and sections where acronyms are used. 
Acronym Associated Words Description Sections 
ASD Adaptive Signature Design Class of Methods to predict 

patients sensitive to treatment 
1,3-6 

CV Cross Validation  1,3-6 
DLLR Difference in LLR  5 
DR Dimension reduction  1,3-5,7-8 
FE Feature Extraction Class of DR Methods 2,3 
FS Feature Selection Class of DR Methods 3 
HTD High throughput data  1,4 
KDA Kernel Density Analysis Can be used as a nonparametric 

classification method 
1,5.3,7 

KNN K Nearest Neighbors Nonparametric Classification 
Method 

1,5.2,7 

LLR Log Likelihood Ratio  4,5 
LR Likelihood Ratio  4 
LRT Likelihood Ratio Test  5 
MDR Multifactor Dimensionality Reduction Nonparametric Classification 

Method 
5.1 

mRNA Messenger RNA  6 
miRNA microRNA  6 
NSC Nearest Shrunken Centroids HTD classification method 1,5.2 
OR Odds Ratio  4-5 
PLS Partial Least Squares  3 
PV Pre-Validation Method of assessing added 

value of genomic features to 
clinical features 

1,5 

SNP Single Nucleotide Polymorphism  6 
SVM Support Vector Machine Nonparametric Classification 

Method 
1,5.4, 7 

 

3. Nested Cross Validation (NCV) to Estimate and Reduce Prediction Error 

Data splitting involves dividing the data into a training set and a non-overlapping validation 

set in order to avoid a downward bias of prediction error ( )PE , which is the probability of an 
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incorrect classification. The expected prediction error can be defined in terms of the joint 

distribution of ,   and ZG X as follows (Hastie et al., 2009 [75]): 

ˆ( ) [ ( , ( , ))],E PE E L G G X Z   

where L is a loss function associated with incorrect classification. If the loss function is 0 for 

correct classification and 1 for misclassification, then prediction error can be estimated on the 

validation set by: 

1

ˆ ˆ( ) / .
D V

D

n n

E i i V

i n

p I g g n


 

 
 

where ig  is class membership for subject i, and ˆ
ig is predicted class membership.

 
The classification model is built using data on the training set only, and then this rule is 

applied to the validation set to predict class outcome, without use of class information on the 

validation set even if it is available. Only after the predicted outcomes have been made is class 

information used to estimate prediction error. This helps to achieve an unbiased estimate of 

prediction error.  

However the goal of machine or statistical learning is not just to avoid a downward bias in 

prediction error, but also to minimize prediction error. The Adaptive Signature Design or ASD 

(Freidlin & Simon, 2005 [54]) incorporates this learning process by optimizing a set of tuning 

parameters on the training set. To avoid overfitting, cross validation is performed on the training 

set for each set of tuning parameters. A grid search is then used to select the optimal set of tuning 

parameters. This final tuning parameter set is then used for prediction on the final validation set. 

This approach is called nested cross validation, or NCV.  

Methods such as the bootstrap (sampling with replacement, Efron, 1994 [42]) can also be 

used. If a bootstrap sample of size Dn is used on the training set, an average of approximately 

63% of the training set subjects are placed into a nested training set. Some of the training set 

subjects are selected more than once, and some are not selected at all. The subjects not selected in 
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the bootstrap sample (the out-of bag or OOB sample) are then placed in the corresponding nested 

validation set. This process is then repeated B times, with some method to assure than all 

subjects in the training set are included in a nested validation set at least once. The number B is 

chosen depending on the classification task at hand. See Pattengale, Alipour, Bininda-Emonds 

Moret, & Stamatakis (2010 [122]) for guidance. Since class outcomes for many of the training set 

subjects are predicted more than once, a voting or averaging rule is needed to make the final 

classification decision. Breiman (2001 [18]) used OOB prediction error together with the 

bootstrap in his Random Forests method. Carpenter & Bithell (2000 [21]) provide a tutorial on 

both parametric and nonparametric bootstrap methods. Table 2 shows classification-related 

methods, including the bootstrap, along with strengths and weaknesses, and related software 

packages. 

4. Nonparametric Dimension Reduction (DR) in Classification 

There is extensive ongoing research involving DR, and as a title of recent review by Fan & 

Lv (2010 [47]) implied, the literature involving DR is so extensive that any review of this topic 

itself requires a DR technique. The DR step in classification should be in alignment with the 

goals of the specific classification problem. Specifically, the goal of DR is to reduce as much as 

possible presence of noise while at the same time preserving information relevant to class 

outcome. The presence of many noisy features can have a large negative impact on classification 

accuracy, and can even reduce accuracy to that of random guessing (Fan & Fan, 2008 [46]). 

DR methods can be subdivided into feature selection (FS) methods and FE methods. FS 

methods do not change individual features, but merely select a subset of them. FE methods 

reduce dimensionality by extracting a smaller number of new features from the existing features. 

FE  may be needed if pairwise correlations between features are high, or if prior knowledge 

favors grouping of features (Fan & Lv, 2010 [47]).   

 



 
 

 

   1
2

 

Table 2: Nonparametric classification and related methods. 
Method Strengths Drawbacks R packages Other Packages 
MDR Incorporates interactions agnostically, including 

higher order gene-gene and gene environment 
interactions; makes few assumptions; often attains 
good classification performance. 

Requires special modifications to handle 
continuous covariates; since it uses best 
subset method, it requires prior DR step in 
HTD setting. 

MDR MDR (open source 
on sourceforge.net) 

KNN Often attains good classification performance; one of 
most simple and intuitive methods, one of most widely 
used for low-dimensional data 

Does not naturally handle categorical 
covariates; requires prior DR step in HTD; 
usually requires scaling of covariates. 

knn(class);kknn,  Proc discrim (SAS) 
Enterprise Miner 
(SAS) 

Naïve Bayes Often improves classification  performance by 
reducing variance at the expense of some increase in 
bias 

May not work well when independence 
assumption is severely violated. 

e1071 SAS macros 
available 

KDA Adaptable to different underlying distributions, while 
still retaining desirable properties of statistical 
densities- naturally handles unequal class sizes and 
different misclassification costs 

Poor small sample size performance; does not 
naturally handle categorical covariates, 
requires prior DR step; comparatively high 
computational burden inhibits use in DR 
steps. 

density(base*), 
kknn, 

Proc kde (SAS) 

SVM Robust (places more emphasis on observations near 
class boundary); includes embedded DR methods; can 
handle nonlinear boundaries 

Requires extensive tuning; SVM’s using 
kernel functions with inner products may 
need a prior DR step since they increase the 
dimensional space; SVM does not handle 
unequal class sizes as well as KDA; usually 
requires scaling of covariates. 

e1071, svmpath SHOGUN 
(http://shogun-
toolbox.org/) 
Enterprise Miner 
(SAS) 

Classification 
Trees 

Easy to interpret, handles mixed covariates, naturally 
incorporates interactions 

May loose information from continuous 
covariates; single trees often have poor 
classification performance. 

rpart Enterprise Miner 
(SAS), CART® 
Salford Systems), 
GUIDE, LOTUS 

Random 
Forests 

Smooths out cutpoints for continuous covariates, 
improved classification performance compared to 
classification trees, naturally incorporates interactions, 
including treatment interactions; 

Loses some interpretability compared to 
single classification trees. 

randomForest Random Forest 
(Salford Systems) 
Enterprise Miner 
(SAS) 

Bumping (or 
Bump 
Hunting) 

Uses bootstrapping to build an ensemble of trees, but 
selects tree with lowest prediction error. Useful for 
finding interactions in absence of main effects. 

Needs prior DR step in HTD setting. May 
lose information from continuous covariates. 

prim  

Boosting Can control order of interactions, often attains good 
classification performance, has  natural embedded DR, 
acceptable speed/good performance  in HD with off –
the-shelf software 

Loses some interpretability compared to 
single classification trees. 

gbm, mboost Enterprise Miner 
(SAS) 

Bootstrap Not a classification method in itself, but incorporated 
into many classification methods such as Random 
Forests to improve classification performance 

Requires some increase in computational 
costs, though this continues to be less of a 
concern with increased computing power. 

rms, bootstrap, 
boot 

Enterprise Miner 
(SAS) 

*base-base package in R 

http://shogun-toolbox.org/
http://shogun-toolbox.org/
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Feature Selection Methods for Treatment Subset Prediction 

FS methods choose a small number of features, say *,p  from the p features. If the goal is to 

predict two groups of subjects categorized as “Relapse within 5 years” and “No relapse within 5 

years”, a Wilcoxon or t test comparing the two classes for each feature could be used to select the 

continuous features which are most highly differentially expressed between the two classes. 

These features would then be selected for use in the classification method. However this method 

may not be optimal if the goal is to identify a subset of patients whose tendency to relapse 

depends on treatment. In this case, a method is desired which specifically preserves information 

concerning treatment-gene interactions. For example one could, for each gene, subtract the 

difference in gene expression between relapsed and non-relapsed subjects in the control group 

from that in the treatment group, and then divide by the standard error. The equation is:

2
11 01 10 00 11 01 10 00ˆ ˆ ˆ ˆ ˆ{( ) ( )}/ (1/ 1/ 1/ 1/ ),k k k k k n n n n          1,..., ,k p  where 2ˆ

k is 

the estimate for the pooled variance for gene k on the training set, ˆ
gtk  are class and treatment 

arm-specific means for feature k on the training set ( {0,1}, {0,1}g t  ), and gtn  is the sample 

size of subjects specific to class g and treatment arm t on the training set; i.e. - 

00 01 10 11 .Dn n n n n     

Then a tuning parameter could be used to select genes which exceed a specified value (or 

absolute value) for this quantity. Such an approach was used in simulations in Freidlin et al. 

(2010 [55]).  

Categories of Feature Selection Methods 

Categories that Saeys, Inza, & Larrañaga (2007 [140]) use for FS methods are the following: 

1. Filter, wrapper, and embedded methods 

Filter methods such as the Wilcoxon rank sum test, and the ratio of between group to within 

group sum of squares (Dudoit et al., 2002 [39]), are independent of the classification method. On 
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the other hand, wrapper methods use a classifier method and attempt to achieve optimization by 

successively selecting a subset of features for classification. Sequential forward selection (SFS) 

(Kittler 1978 [94]), and Recursive Feature Elimination using SVM (RFE-SVM, Guyon, 2002 

[156]) are two examples of wrapper methods. The methods described in Section 4 for MDR and 

for SVM are also wrapper methods. Finally, embedded methods such as those in NSC, Random 

Forests and Boosting, are built into the classification method. Since they are “embedded” in the 

classification method, they are more naturally described along with the classification method in 

Section 4. 

Filter methods are popular because they can be used for any classification method and often 

require less computing costs than wrapper methods. Filtering methods may even be needed prior 

to a wrapper method being applied for classification methods such as MDR and KNN, which are 

more strongly affected by the curse of dimensionality (see Section 4). Many more examples of 

each of these three types of DR methods are given in Saeys et al. (2007 [140]). 

2. Multivariable and univariable methods 

Saeys et al. (2007 [140]) also make a distinction between multivariable and univariable FS 

methods. Unlike univariable methods such as the Wilcoxon rank sum test, multivariable methods, 

like FE methods, address feature dependencies. They sometimes also take into account feature 

interactions. For example the variable importance measure (VIM) used in Classification Trees, 

Random Forests and Boosting (all outlined in Section 4) can be used as a multivariable FS 

method that attempts to rank the importance of each feature. As used in trees and Boosting, VIM 

ranks each variable/feature based on the number of times it is selected in each tree and the 

amount of reduction in prediction error that results. Further details are given in Section 4.5. This 

VIM can be easily extended to Random Forests (Section 4.6.1) by averaging over all the trees in 

the forest. However Random Forests uses a different VIM which involves permuting each 

splitting variable in a tree and recording the decrease in accuracy. This permutation method 

nullifies the effect of the feature while keeping the other features. Hastie et al. (2009 [75]) 
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showed  that this permutation method differentiates between features less clearly than the other 

measure. Also they pointed out that permuting a feature is not the same as leaving it out, since 

when a feature is permuted, there is no opportunity for another feature to take its place in the 

split.  

Lunetta, Hayward, Segal, & Van Eerdewegh (2004 [108]) claimed that this VIM permutation 

method “takes into account interactions among variables without requiring model specification”. 

At the same time they also discovered that a much larger number of trees are needed to achieve 

stable estimates of VIM with Random Forests. However Winham et al. (2012 [173]) found that 

the permutation method had power to detect interactions in low dimensions, but did increasingly 

poorly as the dimension increases. For HTD, it captured only those interactions associated with 

strong main effects. They also pointed out that in the Lunetta et al. study “the multiplicative 

models …have strong marginal components, indicating that the improved performance may be 

due to the marginal rather than non-linear association”. 

The RFE-SVM method mentioned earlier is a multivariable FS method. This method 

recursively eliminates features in an SVM one or more at a time using weights derived from the 

SVM. In the Guyon study (2003 [69]) it outperformed univariable FS methods. A contributing 

factor was that it avoids selecting a redundant set of features. Wang et al. (2005 [169]) reviewed 

multivariable methods including CFS (correlation based feature selection, Hall, 1999 [70]), and 

ReliefF (Robnik-Siko & Kononenko, 2003 [137]). They found that ReliefF accounts for gene-

gene interactions. This method is also briefly highlighted in Section 4.2. CFS is also a 

multivariable method, but it seeks a subset of features highly correlated with class outcome and 

uncorrelated with each other (Liu, Li, & Wong, 2002 [102]). 

It is important to distinguish between feature-feature dependency, association of features with 

class outcomes, and feature-feature interactions. Features may be highly dependent with respect 

to each other and yet have no association with class outcome. CFS seeks out the reverse situation, 

which can also be true. In turn, features associated with class outcomes may or may not include 
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feature-feature interactions. That is, an individual feature in a group may have a strong 

association with class outcome, but changing the level of that feature may not influence the effect 

that other features have on class outcome. Finally features which are independent of each other 

may still have highly significant feature-feature interactions. These distinctions are sometimes 

lost, or at least not sufficiently clarified, in the literature (Saeys et al., 2007 [102]).  

Multivariable methods, since they take into account feature dependencies or feature 

interactions, search over a much higher dimensional space than p unless the search is restricted in 

some way. Therefore unrestricted multivariable methods may not be appropriate for an initial 

large scale DR step. Table 3 shows the relationship between number of covariates p and number 

of possible 1st , 2nd and 3rd  order interactions. This relationship also holds for best subsets 

selection and other unrestricted multivariable DR methods. Fan & Fan (2008 [46]) and Fan & Lv 

(2010 [47]) provide more guidance and details for selection of FS methods. 

Table 3: Relationship between number of features and number of possible interactions. 
 Order of interaction 

P 1 2 3 

5000 12.5*106 20*109 26*1012 

10000 50*106 166*109 420*1012 

20000 200*106 1.3*1012 6.7*1015 

40000 800*106 11*1012 107*1015 

 

Nonparametric FE 

FE methods extract a smaller set of features by combining information from the existing 

features, while containing that information in fewer dimensions/features. FE can be traced back at 

least to principle components, introduced by Pearson (1901 [124]). This is perhaps one of the 

oldest and most well-known and commonly used methods. Several nonparametric FE approaches 

are briefly described below. 
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1. Multidimensional Scaling  

Multidimensional scaling (MDS), proposed by Richardson (1938 [132]), extracts a lower-

dimensional representation of a pairwise distance between features. An example of a pairwise 

distance is difference in wine tasting scores between raters. Bittner et al. (2000 [11]) used MDS 

with gene expression data. A thorough discussion of MDS and related methods such as classical 

scaling can be found in Hastie et al. (2009 [75]). 

2. Use of Biological Information for FE 

Biological information is increasingly being used to facilitate FE. One of many examples 

include Gene Set Enrichment Analysis, or GSEA (Subramanian et al., 2005 [154]). GSEA 

reduces dimensionality by grouping genomic data into biological pathways or gene sets. 

Statistical tests are then conducted on the gene set instead of the individual genes. Efron & 

Tibshirani proposed an interesting modification of GSEA called Gene Set Analysis or GSA (2006 

[43]), which is implemented in the R package GSA. Tarca, Draghici, Bhatti, & Romero (2012 

[155]) introduced a gene set analysis method which down-weights overlapping genes. The 

method is implemented in Bioconductor package PADOG. Another  widely used publicly 

available tool is DAVID (Huang, Sherman, & Lempicki, 2008 [85]). DAVID includes a “Gene 

Functional Classification Tool” that can be used as part of an FE method. Winter et al., (2012 

[174]) recently proposed an adaptation of Google’s PageRank (Page, Brin, Motwani, & 

Winograd, 1999 [119])  called NetRank which combines correlation of genes with class together 

with their importance in the TRANSFAC transcription factor network outlined by Matys et al., 

(2006 [112]) to rank genes as part of a DR step in a classification method. For a review of use of 

biological information for DR, see Moore, Asselbergs, & Williams (2010 [115]). 

3. Clustering Used Together With Feature Extraction  

 One method often used as part of an FE approach is clustering. Clustering methods group 

similar objects together. See Gan, Ma, & Wu (2007 [62]) for an in-depth review of clustering 

methods. Some clustering algorithms are identified in Figures 1a and 2. Clustering is often used 
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with HTD. Pittman et al. (2004 [126]) used clustering to group genes. Metagenes were then 

extracted from these groups using FE. The metagenes were then used as features in the 

classification method. References for development of clustering methods shown in Figure 2 

include [50, 52, 67, 103, 151, 170]. 

Table 4 provides a list and description of some nonparametric DR methods, including 

software implementations. For more detail about FS methods including filter, wrapper, and 

embedded methods, and univariable and multivariable FS methods, see Saeys et al. (2007 [59]). 

For a review of biological information for DR, see Moore, Assselbergs, & Williams (2010 [52]). 

 

 

 

 

 



 
 

 

  1
9

 

 Table 4: Some Nonparametric Dimension Reduction Methods. 
DR Method Examples Description R/Bioconductor 

Software 
Other 
Software 

FS Univariable Wilcoxon test Ranks features based on Wilcoxon test.   
 BSS/WSS  Ranks features based on ratio of Between-Sum-of-Squares to Within-Sum-

of-Squares (Dudoit, 2002). 
  

FS Multivariable CFS  Correlation Based FS. Seeks a subset of features highly correlated with 
outcome and uncorrelated with each other (Liu, Li, Wong 2006). 

RWeka,  WEKA 

 ReliefF See Robnik-Siko and Kononenko, 2003 and Wang, Tetko, Hall and others, 
2005. 

  

Other FS and FS  
software 

 FSelector (Romanski, 2012), Sure Independence Screening (Fan and Lv, 
2008), caret  (Kuhn, 2013). 

FSelector, SIS, caret  

Wrapper Methods Best Subset Selection Uses a classifier method to select the best subset of features from a larger 
set of features (Richardson, 1938), also see Hastie et al., 2009, Bittner et al., 
2000. Computationally impractical for large p. 

leaps Proc phreg, 
proc reg (SAS) 

Embedded Methods  The classification method itself incorporates a feature ranking or dimension 
reduction method.  

  

 Variable Importance 
Measure 

For classification and regression trees; easily extendable to Random Forests 
and Boosting; bases importance of each variable/feature on the number of 
times it is selected in each tree and the amount of reduction (improvement) 
in prediction error. The relative importance of each variable uses the square 
root of the VIM and scales them by using 100 for the most important 
variable. 

randomForest Proc split 
(SAS) 

FE MDS Multi-Dimensional Scaling. Extracts a lower-dimensional representation of 
a pairwise distance between features. 

cmdscale (R base), 
isoMDS(MASS) 

Proc mds 
(SAS) 

Biologically Based  
FE 

GSEA  Gene Set Enrichment Analysis. Reduces dimensionality by grouping 
genomic data into gene sets or biological pathways (Subramanian, Tamayo, 
Mootha and others, 2005). 

GSEABase, GSEAlm, 
limma 

 

 GSA Gene set Analysis. Adaptation of GSEA, Efron and Tibshirani GSA  
 PADOG Pathway Analysis with Down-weighting of Overlapping Genes, (Tarca, 

Draghici, Bhatti and others, 2012). 
PADOG  

 DAVID Includes a Gene Functional Classification Tool  that can be used as part of 
an FE method, (Huang, Sherman, and Lempicki, 2008). 

 DAVID 

 NetRank Adaptation of Google’s PageRank which combines correlation of genes 
with class together with their importance in the TRANSFAC transcription 
factor network (Matys, Kel-Margoulis, Fricke and others, 2006). 

 GUILD 

DR- Dimension Reduction; FS – Feature Selection; SVM-Support Vector Machine; VIM-Variable Importance Measure 
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5. Nonparametric Classification Methods 

5.1 Multifactor Dimensionality Reduction (MDR) 

MDR (Ritchie et al. (2001 [135]) was originally developed to detect multi-locus gene-gene 

and gene-environment interactions associated with disease. Lou et al. (2007 [47]) extended it to 

include continuous covariates. Figure 3a shows an example where the number of loci is equal to 

2, and each locus has 3 genotypes. In this example there are nine possible loci-genotype 

combinations. The upper left cell of Figure 3a represents the AA-BB combination. The steps for 

MDR are:  

1. In each cell the proportion of disease versus disease-free individuals are calculated. 

2. A single cut-off is then found to identify high-risk vs. low-risk cells using nested CV. 

3. The optimal number and combination of loci on the training set is determined using best 

subsets.  

4. Then prediction error is estimated on the final validation set using the final model chosen.  
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Figure 3a and b: Use of MDR to determine high-risk loci-genotype combinations on a training set, for 
purposes of classification. 
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MDR and DR 

Richie et al. (2001 [135]) claimed that MDR is a DR method which reduces a p-dimensional 

factor space to a one-dimensional space by categorizing each possible multi-locus genotype 

combination as high-risk or low-risk. However Park & Hastie (2008 [120]) challenged this 

assertion on three fronts: 

1. For every k less than or equal to p, MDR searches for the optimal k loci-genotype 

combination. 

2. MDR searches for the optimal number of k factors. 

3. MDR searches for the optimal cutpoint to classify individuals in each loci-genotype 

combination into high or low risk.  

They showed through simulation that the effective degrees of freedom are actually much 

greater than 1. 

Advantages and Disadvantages of MDR 

1. Since proportions are estimated for each combination, there is no assumption of linearity, and 

the degree of interaction is determined agnostically- that is without any linearity assumptions 

or hierarchy regarding main effects and interactions.  

a. The advantage of this is that higher order interactions between loci are estimated 

without first having to account for main effects. This is a claimed advantage in the 

presence of epistasis.  

2. The order of interaction is restricted to k-1 by the number of features k included in the model.  

a. There may be some advantages in restricting the order of interactions to be much less 

than the number of features. In Section 4.6.2 an ensemble method is discussed which 

follows this approach.  

3. Figure 3b shows how MDR can be extended from detection of gene-gene interactions or 

gene-environment interactions in a case-control setting to gene- treatment interactions in a 

clinical study.  
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4. Generalized MDR, or GMDR (Lou et al., 2007 [106])  broadened use of MDR by allowing 

for both continuous and discrete covariates, as well as continuous phenotypes.  

5. Ritchie, Hahn, & Moore (2003 [136]) found that in the presence of 50% genetic 

heterogeneity, the power of MDR is very limited and stated that “extending MDR to address 

genetic heterogeneity should be a priority”. 

6. MDR is strongly affected by the curse of dimensionality. If each of p loci has 3 genotypes, 

then the number of table cells for which proportions need to be calculated can be as large as 

3p. Therefore in presence of HTD DR methods may be needed before applying MDR 

(Cordell, 2009 [30]). Methods such as Genetic Algorithms (Holland, 1975 [82]) which do not 

require an exhaustive search have also been used with MDR in an attempt to address this 

issue. 

7. Software is readily available for MDR and GMDR (http://sourceforge.net/projects/mdr/ 

accessed 10/28/2012).  

8. The method is straightforward, and it makes few assumptions regarding interactions. It is 

often used as a standard for gene-gene interactions involving SNP’s (single nucleotide 

polymorphisms). It has also been used as a complement to logistic regression.  

MDR and Logistic Regression 

Ritchie et al. (2001 [135]) claimed an advantage of MDR over logistic regression in the 

presence of epistasis since main effects do not need to be accounted for first. Logistic regression 

used for classification (LCA) is a parametric method. However at this point it is interesting to 

note that LCA using one loci-genotype cell as a reference, and dummy variables for every other 

loci-genotype combination, could be used to mimic the MDR approach. Cut-offs could be 

determined in a similar manner, and inclusion of continuous covariates could be included without 

need for development of additional methods. Comparisons with other genetic models could then 

also be made using logistic regression; for some guidance see for example Sasieni (1997 [141]) 

and Freidlin, Zheng, Li, & Gastwirth  (2002 [53]). Methods to account for heterogeneity, such as 

http://sourceforge.net/projects/mdr/
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the quasi-likelihood approach for inclusion of a dispersion parameter (McCullagh & Nelder, 1989 

[113]), are also available.   

MDR requires no modification to be used as a treatment subset prediction method for 

categorical factors. One simply uses treatment as an environmental factor, as shown in Figure 3b. 

See Table 2 for further information on MDR. Park & Hastie (2008 [120]) provide an in-depth 

review of MDR and also propose a penalized logistic regression method for detection of gene-

gene interactions.  

5.2 K Nearest Neighbors (KNN) 

While the MDR method was first developed for categorical data, K Nearest Neighbors 

(KNN) is more naturally used with continuous data. It classifies the ith subject with covariate or 

feature vector { }x zi i, in the validation set based on the K subjects with feature vectors nearest 

to it in the training set. Nearness is based on a distance metric for the subject-specific feature 

vectors, such as Euclidian distance, Mahalanobis distance, absolute value (Manhattan) distance, 

or 1 minus correlation (Dudoit et al., 2002 [39]). The class assigned to the subject in the 

validation set is based on majority class vote of the nearest subjects in the training set. For this 

reason K is usually chosen as an odd integer to avoid ties. Pre-processing of data is important for 

KNN since most distance measures used do not take into account variance. One method is to 

scale each feature so that it has overall mean 0 and unit variance (Hastie et al., 2009 [75]); K can 

be chosen through methods such as nested CV; K=1 or K=3 are common choices.  

As with MDR, a separate DR step is needed in an HTD setting before applying KNN. Used in 

this way, KNN outperformed most alternatives in the Dudoit et al. (2002 [39]) comparison study. 

See Table 2 for KNN strengths, weaknesses and software. 

Distance Measures for K Nearest Neighbors 

The proportion of nearest neighbors in class 1g   is used as a distance measure for 

classification in the KNN method. R Code in supplemental material shows how this distance can 
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be extracted. The distance of the K nearest neighbors for each class may also be used as a 

distance measure. If the K nearest neighbors in class 1g   are closer to subject i  than the K 

nearest neighbors in class 0,g  then this distance could be used to allocate subject i  to class 

1g  . Section 7 shows how these distances can be applied to treatment subset prediction.  

Classification Methods and Clinical Covariates 

Handling of mixed variables is not regarded as a strength for KNN. However the PV example 

in the work by Tibshirani & Efron (2002 [159]) used the following approach to combine genomic 

and clinical covariates: 

1.   An NSC predictor (Tibshirani e al. 2003 [161]) is developed using CV on the genomic data  

only.  

2 The NSC predictor is then included as a feature, along with clinical covariates in a logistic 

regression model over all the data set.  

2. The added value of the genomic NSC feature is then evaluated in the logistic regression 

model. 

The authors proposed a bootstrapping procedure to address issues associated with effective 

degrees of freedom. Hofling & Tibshirani (2008 [81]) and Chang et al. (2005 [23]) also proposed 

modified PV methods. Approaches such as PV could be used to combine clinical covariates and 

HTD features in a classification method for treatment subset prediction. There is nothing 

restricting PV to HTD classifiers such as NSC.  

5.3 Kernel Density Analysis (KDA) Used for Classification 

KDA can be thought of as an extension of KNN (Hastie et al., 2009 [75]). A nearest neighbor 

kernel density is a non-smooth kernel density.  

Univariable Kernel Density Estimation  

Kernel Densities are nonparametric densities formed through use of kernel functions. A one-

dimensional kernel density can be expressed as: 
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where n  is the sample size, K  is the kernel, b  is the bandwidth, 0x  refers to a point in this one-

dimensional covariate space, and i1x  refers to a one-dimensional covariate vector for the ith 

subject. The Gaussian kernel is 1 0
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  where   is the probability density 

function for the Gaussian distribution. For more details see Venables & Ripley (2002 [165]) and 

Hastie et al. (2009 [75]).  

Univariable Kernel Density Analysis for Classification 

To use KDA for classification with one feature, the densities and prior class probabilities 

must be calculated for each of the classes. If the feature is genomic, the equation is 
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If class densities and probabilities are estimated from the training set, the ratio is estimated as  
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
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where 1 0ˆ ˆ ˆ{ , }g   are the prior class probabilities estimated from the 

training set, and 1 0
ˆ ˆ ˆ{ , }g     are the vectors of class-specific parameters used to form the 

density, such as bandwidth and sample size, again calculated from the training set for each class 

g. A cut-off of 1 can be used for the two classes, or it can be based on CV. 

Note that this ratio is the distance measure used to make a classification decision. A ratio of 1 

indicates a subject on the border between the two classes, and ratios near 0 or much greater than 1 

indicate stronger evidence for the subject being in one of the two classes. The log of this ratio, 

,iLLR can also be used, in which case the class border is 0, and large positive or negative values 

indicate stronger evidence. 
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Numeric Example  

In the training set, 30 patients responded to treatment and 30 patients did not. There is one 

value for gene expression for each patient. Gene expression for non-responders is, after 

appropriate normalization, normally distributed with mean 0 and standard deviation 1. For 

responders (class 1g  ), it is normally distributed with mean 1 and standard deviation 2. Now on 

the validation set class is unknown for patient ,i but gene expression=1.5. Using set.seed(234) and 

default settings for functions density (for kernel density calculation) and approxfun in R (version 

3.02) for interpolation between density values:   

1 1 1

0 1 0

ˆ ˆˆ ( 1.5 | ) 0.5*0.1915 1.36.ˆ ˆ 0.5*0.1408ˆ ( 1.5 | )
i

i

i

f z
LR

f z






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




 

Since the ratio is greater than 1, and class sizes are equal, the patient can be predicted to respond 

to treatment. The class boundary ( 1iLR  ) occurs at about 1.298z  . 

Multivariable Kernel Density Analysis for Classification 

The naïve Bayes assumption is that features within a class are independent. Extension of 

KDA to a multi-dimensional feature space is made easier if this assumption is employed. Various 

authors including Hastie et al. (2009 [75]) and Bickel & Levina (2004 [9]) have noted the success 

of naïve Bayes methods, despite the fact that the independence assumption is not generally true. 

Using this assumption, densities can be calculated conditional on class for each feature 

individually, and then the p-dimensional density is the product of the individual densities. The 

density conditional on class g for a new subject with genomic feature vector 1,...,i i ipz zz  is 

then
1

ˆ ˆˆ ˆ( | ) ( | ),
p

i g ik gk

k

f f z


z   assuming independence. Individual subjects can be allocated as 

before using the plug-in likelihood ratio 1 1

0 0
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 Densities can also be based on a 
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combination of clinical and genomic features { },i i,x z  and categorical features as well as 

continuous features. Categorical features can be incorporated using histogram estimates (Hastie et 

al., 2009). 

Kernel Density Classification for Two or More Classes 

If there are two or more classes 0,1,..., 1,g G   then subject i can be allocated to the class 

with the highest posterior probability; i.e. - 

, 1

0

ˆ ˆˆ ( | )
ˆ arg max { } arg max ,

ˆ ˆˆ ( | )

g i g
post gii g g G

g i g

g

f
g Pr  

f








 
 
 

   
 
  


z

z





 where g  is the prior probability for 

class g. Details can be found in Hastie et al. (2009 [75]). Now denote ,Prpost i
 as the posterior 

probability for class g=1 for subject i. Then ,post iPr  is a distance used to make a classification 

decision. For two classes, a ,i 0.5postPr   is on the border between the two classes. Probabilities 

away from this boundary in either direction indicate stronger evidence for one of the two classes. 

Approaches employing both iLLR and ,post iPr  distances are applied to treatment subset 

prediction in Section 7.  

Other KDA Methods 

There are also other approaches besides naïve Bayes to obtain multivariable kernel densities. 

Wand and Jones (1993 [168]) compared smoothing parameterizations for bivariable kernel 

densities. The R package ks (Duong, 2007 [41]) allows kernel smoothing from one to 6 

dimensions. The function kda.kde in package ks performs KDA for up to 6 dimensions. Still 

another KDA approach involves difference in densities. This approach can be traced back to Hall 

and Wand (1988 [71]). More recently Kim and Scott (2010 [93]) introduced L2 kernel 

classification for difference in densities. For dimensions p>15, they introduced a regularization 
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parameter, which their simulations showed enables performance similar to other HTD methods 

such as SVM.  

5.4 Support Vector Machines 

The KDA method uses kernel functions to estimate class densities, which can then be used to 

find a decision boundary. SVM’s, on the other hand, use kernel functions to find a decision 

boundary between the two classes. When two classes are linearly separable, a decision boundary 

is found that maximizes the separation between the two classes. See Hastie et al. (2009 [75]) and 

Cristianini & Shawe-Taylor (2000 [32]) for more detail. 

 

Figure 4: A support vector machine for a 2-dimensional feature space:  (gene expression for gene 1 and 
gene 2) which linearly separates the two classes, which are represented by the “Δ” subjects  and the “o” 
subjects. In this case there is a separating hyperplane, meaning that there are no subjects on the wrong side 
of the line. Therefore only three subjects-specific feature vectors are needed as support vectors. In this case 
they are  4z , 9z , and 12z .  

Support Vector Machines for Two Linearly Separable Classes 

1. Figure 4 shows training set data points consisting of the fixed iz vectors, where 2.iz  

Extension to higher dimensions p is straightforward. The iz are the feature vectors for each 
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subject i  in the training set, 1 11,..., ; 6i n n   for the o class, and 1 1 21,..., ni n n   for the 

Δ class.  

2. The horizontal and vertical axes represent gene expression for gene 1 and gene 2. Quadratic 

programming  is used to conduct a search to find the three support vectors, which are the 

three subject-specific feature vectors  that minimize Euclidian distance w in the equations 

for the two margin boundaries passing through the three support vectors ; the equations are 

1b 'w z  and -1b 'w z . 

3.  In Figure 4 the three support vectors are ,  4 9z z and .12z  

4. The decision boundary is then the line 0b 'w z . 

5. The classification decision for subject i  in the validation set is then ˆ( ) sign( )i ig b 'z w z .  

From this it follows that the distance used to make a classification decision for subject i in the 

validation set is .i id b 'w z  A large magnitude distance in the negative/positive direction 

indicates subject i  is further away from the class boundary, and offers stronger support for the 

subject being in one of the two classes. 

Numeric Example 

Subject i  in validation set has gene expression 1.1 and 1.3, for two genes, after appropriate 

normalization and scaling. Also from the training set are calculated coefficient vector

( 0.5,1.8) ' w , and 3.b   Then 4.79,i b 'w z and ˆ sign(4.79) 1.ig    R code which 

calculates coefficients and classification distance is included in supplemental material.  

Support Vector Machines for Non-Linearly Separable Classes 

In the case where it is not possible to linearly separate the two classes, it is possible to allow 

additional support vectors on the wrong side of their respective margin boundaries with slack 

variables which are the distances of the corresponding support vectors from their respective class 

margin boundary. In this situation the same approach is used to find the support vectors as before, 
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but with the additional constraint of minimizing the slack variable distances using a penalty term. 

More detail is given in Hastie et al. (2009 [75]). If the decision function itself is nonlinear one can 

often find a linear separating hyperplane in a higher dimensional space using specific kernel 

functions. See Vapnik (1998 [164]) for more details. Chen et al. (2008 [25]) compared various 

SVM methods with MDR in their ability to detect gene-gene interactions. More detail is given in 

Hastie et al. (2009 [39]).  

5.5 Classification and Regression Trees 

Classification and regression trees are a way of recursively partitioning data, one feature at a 

time, into more homogeneous subgroups. The root node is at the top of the tree and contains the 

entire data set. Starting from this root node, the data is recursively partitioned into daughter nodes 

which contain finer and finer subsets of the data, one feature at a time, based on which feature 

subsets the previous node into the most homogeneous subgroups. The terminal nodes contain the 

final partitions for all the data. Each subject in a validation set can then be allocated into one and 

only one of these final partitions based on a classification tree grown on a training set.  
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Figure 5: Flowchart of ASD nested cross validation method. *Training set can refer both to Stage 1 patients, and 
to the training sets nested within the Stage 1 data. Similarly, validation set can refer to the corresponding nested 
validation sets in the Stage 1 data, or to the final validation set – the Stage 2 patient data. 

Feature and Cutpoint Selection  

Feature selection for partitioning a node is performed using criteria such as reduction in 

impurity. Impurity measures are at a maximum when the two partitioned daughter nodes have the 

same proportion of subjects in each of the two classes. Impurity is at a minimum when the two 

daughter nodes perfectly separate the two classes. Reduction in impurity is measured by the 

difference in impurity between the parent node and the average impurity of the daughter nodes. 
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Examples of impurity measures include the Gini index (Gini, 1912 [64]) and entropy (Hastie et 

al., 2009 [75]).  

Statistical Interactions in Classification Trees 

One advantage of classification trees often pointed out is that they are able to identify 

complex interactions, including interactions involving different types of covariates, such as 

interactions between treatment, clinical covariates, and HT covariates. In fact early development 

of classification trees were motivated by interaction detection (Morgan & Sonquist, 1963 [75]). 

Strobl, Malley, & Tutz (2009 [152]) provide an in-depth review of statistical interactions in trees. 

If a tree contains only one split, then no interaction can be included since only one feature is 

used in a split. Such a tree is often called a stump and has a depth 1.h   However if a tree 

contains two splits, then a two-way interaction is involved if the change in class proportions due 

to the second split depends on the partitions for the first split. A concise illustration is shown in 

Figure 4 of Strobl et al. (2009 [152]). Interactions may also be present when a split occurs in one 

daughter node, but not the other. Trees with greater depth (more recursive partitions) are capable 

of including successively higher order interactions.  

If specific interest lies in treatment-covariate interactions to identify a subset of patients more 

prone to relapse, trees based on unmodified CART® (Breiman, Friedman, Olshen & Stone, 1984 

[15]) have limitations since they may model interactions that are not of primary interest. However 

Schmoor, Ulm, & Schumacher (1993 [145]) modified the approach. They first used CART to 

identify covariates associated with disease prognosis. They then tested for treatment 

heterogeneity within the subgroups identified by these covariates, but results were not significant. 

Finally they modified the splitting procedure and based it on treatment interactions. Using this 

approach they found that Karnofsky Index and age had significant treatment interactions. 

Karnofsky Index was not included in the first approach because its main effect was not strongly 

associated with prognosis. Later Loh (2002 [104]) proposed a method called GUIDE which 

enables detection of local interactions in regression trees. Su, Tsai, Wang & Li (2009 [153]) 
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further developed use of interaction trees. See Loh (2011 [105]) for a review of classification and 

regression trees which includes interaction trees. 

5.6 Ensemble Methods  

“Plans fail for lack of counsel, but with many advisers they succeed” (New International 

Version, Prov. 15:22). This is the basic idea behind ensemble methods, which combine classifiers 

in different ways to improve stability and performance of individual classifiers. Some ensemble 

methods are reviewed below. 

5.6.1   Random Forests 

Individual classification trees can be unstable, since small changes in the data can have a 

large effect on the predicted class labels. Also the order of the covariates or features used to split 

nodes can have a large influence on the predicted class label. Random Forests is an ensemble 

classification method that incorporates tools such as bootstrapping and Random Features (random 

sampling of features selected for potential splitting of a node; Breiman, 1999 [17] ) to improve 

stability of classification trees. The steps are as follows: 

1. Divide data with n subjects into training set with Dn subjects and validation set with Vn

subjects. 

2. From training set with sample size ,Dn  use bootstrapping to generate a nested training set of 

size .Dn  

3. From the nested training set grow a tree using an impurity measure to select from a small set 

of m  candidate random features at each node. 

4. Classify each subject not included in the bootstrap sample using this tree. 

5. Repeat the above steps to grow B trees. 

6. Using the B trees, classify each subject using the majority vote from all the trees. 

If the data set is divided up into a training and a validation set, then B trees can be grown on 

the training set and used to classify each subject i  in the validation set. In that case the 
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classification decision for subject i  can be written as ( )
, 1ˆ ( ) ( 0.5)ensemble

i i i ig I p x z , where I  

is the indicator function and , 1i Gp   is the proportion of the B trees that classified subject i  into 

1.g   In this case the distance used to make the classification decision is , 1i Gp  . A proportion 

away from 0.5 and near 0 or 1 indicates stronger support for 0ig  or 1.ig   R code is included 

in supplementary material which automatically calculates this proportion. The classification 

decision can also be written as ( ) ( )
,

1

ˆ ˆsign ( ) ,
B

ensemble b

i i i i

b

g g


 
  

 
 x z  where ( )ˆ { 1,1},b

ig   and  

1,..., Bb=  denotes the bth successive classifier. The classification distance is then: 

( )
,

1

ˆ ( ).
B

b

i i i

b

g


 x z  A higher magnitude of this quantity in either the positive or negative direction is 

then an indication of how far away subject i  is from the border between the two classes.  

Section 7 shows how these distances can be extended to treatment subset prediction. See 

Foster, Taylor, & Ruberg (2011 [51]) for an existing Random Forests method which uses clinical 

covariates, including demographic and survey data, to predict a subset of patients having an 

enhanced treatment effect.  

Bumping and Interaction Effects 

Bumping (Tibshirani & Knight (1999 [158]), like Random Forests, uses bootstrapping to 

build an ensemble of trees, but unlike Random Forests it selects the one tree with the lowest 

prediction error on the training set. If enough trees are used, Bumping can often find a split to 

minimize prediction even if are no main effects. An example is given in Hastie et al. (2009 [75]). 

Lipkovich, Dmitrenko, Denne, & Enas  (2011 [101]) developed a method closely related to 

Bumping to predict multiple treatment subgroups in clinical trials.  

5.6.2   Boosting 

Boosting employs an ensemble of individual classifiers, and each classifier after the first one 

is reweighted based on the previous classifier.  
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1. The individual classifier is selected from a category of classifiers; for example, logistic 

classification trees (Chan & Loh, 2004 [22]).  

2. The first individual classifier, (1)ˆ ( , ),i i ig x z has weights initialized for each subject i in the 

training set: (1) / , ,...,i D Dw 1 n i 1 n  . This classifier is then fit to the training set using these 

(1)
iw  weights.  

3. If subject i is misclassified for the bth classifier, its weight (
( 1)b

iw  ) is increased, and subjects 

classified correctly have their weights decreased. 

4. A coefficient ( )b  is determined for the bth classifier based on weighted classification 

performance. Individual classifiers with better performance are given larger positive 

coefficients. 

5. Subjects in the validation set are then allocated to one of two classes based on the ensemble 

classifier: ( ) (b) (b)

1

ˆ ˆ ( , ) ,  1,..., .
B

ensemble

i i i i D D V

b

g sign g i n n n


 
    

 
 x z  

 A shrinkage constant  much smaller than 1 has been shown to prevent overfitting. The 

equation then becomes: 

( ) (b) (b)

1

ˆ ˆ ( , ) .
B

ensemble

i i i i

b

g sign g 


 
  

 
 x z   

The distance used in Boosting for classification is then (b) (b)

1

ˆ ( , )
B

i i i

b

g 


 x z . Large negative 

distances indicate support for allocating subject i into class 1,g    and large positive distances 

indicate support for class 1.g   Differences in this distance across treatment arms may then be 

evidence for subject i being sensitive to treatment. R code is included in supplementary material 

which calculates the Boosting classification distance for a subject in the validation set.  
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More information about Stochastic Boosting and Gradient Boosting can be found in Hastie et 

al. (2009 [75]), Friedman (2002 [60]), and Elith, Leathwick, & Hastie (2008 [44]). 

Boosting and Interaction Order 

As explained in Section 5.5, the order of interactions in a tree is restricted by the depth of the 

tree. A tree of depth h allows interactions up to order 1h . This fact can be exploited in Boosting 

to compare models allowing different interaction orders. This can be done by comparing 

prediction error of boosted trees of a specific depth to that of boosted tree stumps, which allow no 

interactions. Care must be taken to allow a sufficient number of trees to minimize prediction 

error. Several authors have indicated that trees with depth in the range of 5 to 9 can be used in 

this manner to assess order of interactions.  

Boosting and Interpretability 

The VIM developed for classification trees can be easily used in Boosting to find the most 

influential variables. Elith et al. (2008 [44]) showed partial dependence plots of main effects and 

interactions based on VIM. The main effects plots showed the most influential main effects with 

other variables fixed at their average value. The same approach was used for contour plots of two 

variables to assess interactions. Contour plots which include the two-variable interaction are 

compared to contour plots from boosted stump models which cannot include interactions. The 

difference in the two plots gives a visual comparison of the importance of the interaction on the 

marginal effect.  

5.7 Other Methods  

A brief mention is given here of some other classification methods which may be used to 

identify subsets of patients responding differently to treatment.  

Ensemble methods reviewed in this study, such as Random Forests and Boosting, employ 

individual classifiers of the same category. Stacking (Wolpert, 1992 [175]) uses an ensemble of 

different classifiers, and this approach has been shown to improve performance under many 
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situations. Leblanc & Tibshirani (1996 [98]) developed a Bootstrap approach for Stacking. A 

related approach is Bundling (Hothorn and Lausen, 2005 [84]), implemented in the R package 

ipred (Peters & Hothorn, 2012 [125]). For a recent in-depth  review of ensemble methods, 

including combination methods, combination learning, ensemble diversity, and many other 

approaches, see Zhou (2012 [182]). 

Cordell (2009 [30]) reviewed a Bayesian method to assess gene interactions (BEAM, or 

Bayesian Epistasis Association Mapping, Zhang & Liu, 2007 [180]). Software implementations 

of BEAM can be found at http://sites.stat.psu.edu/~yuzhang/ (accessed 10/13/2012). Huang et al. 

(2004 [86]) introduced FlexTree, a tree-structured methods for detecting gene-gene interactions. 

This was also compared to MDR and the penalized logistic regression method in the Park & 

Hastie (2008 [120]) work. Logic regression (Ruczinski, Kooperberg, & LeBlanc, 2004 [138]) has 

been used in sequence analysis and to explore high-order interactions in HTD. Foster et al. (2011 

[51]) introduced the “Identical Twins” approach. This method borrows an approach from 

counterfactual models (Ginsberg, 1986 [65]). Specifically, it assumes “there are two possible 

outcomes for each person (one under each treatment assignment), only one of which can be 

observed (Foster et al. 2011 [51]).” The KDA classification method described in Section 4.3 used 

a counterfactual approach, as did Rai, Pan, Cambon and others (2013 [129]).  

For an introduction to Neural Networks, see Duda et al. (2001 [38]), Hastie et al. (2009 [75]), 

and Venables & Ripley (2002 [165]). For an application of Neural Networks to cancer 

informatics, see Cruz & Wishart (2006 [33]). For Bayesian Neural Networks ,see Neil & Zhang 

(2006 [116]). A Bayesian Neural Network model entered in the NIPS 2003 challenge 

(http://nips.cc/) had superior classification performance to Boosting and Random Forests models 

(Hastie et al. 2009 [75]). One disadvantage of Neural Networks in a clinical setting is difficulty of 

interpretation (Hastie et al., 2009[75]). Chen et al. (2008 [25]) argued that Neural Networks are 

not appropriate for study of gene-gene interactions. On the other hand, ensemble methods such as 

Boosting can employ Neural Networks as individual classifiers in a way similar to trees. An 

http://sites.stat.psu.edu/~yuzhang/
http://nips.cc/
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implementation of Neural Networks is found in R package nnet (Venables & Ripley, 2002 [165]). 

There is also extensive literature on rule-based and fuzzy rule-based classifiers (Kosko 1993 

[96]). 

6. Generalizability of Classification Methods 

Split sample, CV, and bootstrap methods discussed above are internal validation methods. In 

these methods, the same data set used for training is also used for validation and prediction error, 

even though paired training and validation sets are themselves non-overlapping. Internal 

validation is important and necessarily precedes other more all-encompassing forms of validation. 

Altman, Vergouwe, Royston & Moon (2009 [1]) provide an in-depth review of internal and 

external validation. 

High dimensional genomic and proteomic data magnify challenges associated with external 

validation because the field is changing rapidly and platforms, technologies, and methods become 

obsolete. For example in the early 2000’s HTD commonly involved messenger RNA (mRNA) 

expression. However it has increasingly been shown that miRNA’s, copy number, SNP’s, 

proteins, and methylation status play an important role in cancer and melanoma. Next Generation 

Sequencing (NGS) platforms are replacing traditional microarray platforms in many applications. 

Since NGS often involves count data, this may mean that, in these situations, models for count 

data, such as Poisson models, may be used in place of other classification methods. 

While developments in all these areas are bringing tremendous opportunity for advancement 

in treatments of melanoma and other cancers, they also pose challenges regarding external 

validation. Classification methods that are robust to changes in platforms may be more 

generalizable. To that end, Maglietta et al. (2010 [110]) proposed a method which involves rules 

for selecting sets of genes/miRNA’s. 

7. Discussion and Conclusions 

The specific ASD described in Freidlin & Simon (2005 [54]) uses weighted voting and single 

gene logistic models which include treatment-gene interaction. The tuning parameter set consists 
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of a tuning parameter   to select predictive genes from the training set, a tuning parameter R  to 

determine the cutoff for the magnitude of the treatment arm odds ratio ( )OR for a selected gene, 

and a tuning parameter H  to determine the number of selected genes with OR  exceeding R

necessary to predict a patient to be sensitive. More details are given in Figure 5. 

In this specific ASD design, the treatment arms OR is used as a distance measure to compare 

response to treatment across the two arms. In the ASD implementation by Scher, Nasso, Rubin, & 

Simon (2011 [144]) the log hazard ratio was used in the same way. Below are examples of 

nonparametric distances used in treatment subset prediction methods. 

Treatment Subset Prediction Using Kernel Density Analysis and Random Forests 

Distances for KDA used for classification have been described in Section 5.3. For example an 

LLR  close to 0 indicates a subject on the borderline between the two classes, and large positive 

or negative values indicates the extent to which a subject may be in one class or the other. The 

difference in the LLR ( )DLLR between the treatment and control group is then a measure of 

how sensitive the subject in the validation set is to treatment. The single-gene model is: 

    11 11 10 10
1 0

01 01 00 00

ˆ ˆˆ ˆˆ ˆ( | ) ( | )log log .ˆ ˆˆ ˆˆ ˆ( | ) ( | )
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ik i k i k

ik k ik k

f z f z
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 
   

 

 
 

The method for calculating itkLLR  is the same as in Section 5.3, except that it is now 

calculated separately for each treatment arm, 1t   and 0,t   and for each selected gene k. This 

in turn necessitates estimated prior probabilities ˆ
gt  and parameters ĝtk  in place of ˆ

g and ˆ
g , 

as these quantities are now calculated separately not only for each class g, but also for each 

treatment arm t (and ĝtk for each selected gene k), using class and treatment arm-specific 

information from the training set. Alternatively, the estimate for the single gene posterior OR  is 
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Pr Pr
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


where ,post itkPr   is similar to ,post iPr in Section 5.3 except 
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it is calculated for each selected gene k and for both treatment arms 1t   and 0.t   A high 

positive value of ikDLLR or of  ,log( )post ikOR  is indicative of a positive response in the 

treatment arm compared to the control arm for subject i. In a weighted voting method, ikDLLR  

or ,log( )post ikOR is calculated for each gene k and for each subject i in the validation set, and if 

the number of genes with ikDLLR R  is at least ,H  that subject would be classified as 

sensitive to treatment. The same nested CV approach used in ASD could then be employed in this 

method. Since the classification distance for Random Forests can also be expressed as a 

proportion (of votes), a Random Forests OR  can also be employed in the same manner for 

treatment subset prediction. However only tuning parameter R  may be needed for Random 

Forests, since one OR is calculated for each subject, and since the Random Forests embedded 

DR method may eliminate need for .  

K Nearest Neighbors and Treatment Subset Prediction 

The distance employed in KNN is calculated over all the selected features for a subject. This 

eliminates need for the tuning parameter H in ASD. However a tuning parameter is still needed 

for ,  ,K   and .R  To make a classification decision, KNN uses the proportion of nearest 

neighbors in the response class g=1, say ip  as a distance. If the proportion is greater than 0.5, the 

subject is assigned to the response class, and to the non-response class otherwise. This can be 

expressed as ˆ ( 0.5).i ig I p   A simple method for treatment subset prediction is to compare 

this proportion across the two treatment arms. In this method, the K nearest neighbors are 

calculated for both the treatment arm and the control arm. A greater difference in this proportion 

over the two treatment arms 1 0( )i ip p is then indicative of patient sensitivity to treatment.  

An alternative approach that makes direct use of the distance measure used to select the 

nearest neighbors is as follows: 
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1. The K nearest neighbors for a subject in the validation set are found for both responders and  

non-responders over both training set treatment arms. The total nearest neighbors for a 

subject is 4 .K   

2.   The average distance, say gtid , is calculated for both the K nearest responders and the K   

nearest non-responders in each treatment arm.  

3. The average distance of the responders is then subtracted from the average distance of the  

non-responders for both treatment arms:     01 11 00 10 .i i i id d d d    

4. If this distance exceeds tuning parameter ,R  the subject is predicted to be sensitive to  

treatment.  

Numeric Example 

After appropriate DR and standardization for gene expression, it is found, using nested CV on 

the training set, that the optimal values for K and R are 2 and 2.2. Then for subject i  in the 

validation set, the average distance of the two closest responders on the training set treatment arm 

is 2.3, using Euclidian distance. The average distance of the two closest non-responders is 4.4. On 

the training set control arm, the average distance for the two closest responders is 3.5, and for 

non-responders it is 3.3. Therefore    01 11 00 10 2.1 ( 0.2) 2.3.i i i id d d d       Since 

2.3 ,R  subject i  is predicted to be sensitive to treatment. 

Treatment Subset Prediction Using Support Vector Machines and Boosting 

The numeric example given for SVM in Section 5.4 is easily extendable to treatment subset 

prediction. The distance tid  is calculated in the same manner as id  in Section 5.4, but with w and 

b calculated separately for each treatment arms in the training set. The difference in this distance 

between treatment arms is then: 

       1 0 1 1 0 0| 1 | 0 ' ' .i i i i i id d d t d t b b        w wz z  A tuning parameter similar to

R can be selected using nested CV or bootstrapping on the training set. If this difference in 
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distance exceeds ,R subject i in the validation set is then predicted to be sensitive to treatment. 

The same approach can be used for Boosting, using the Boosting distance. Note that if an 

embedded DR method is used, then only tuning parameter R is needed for these methods. An 

additional advantage for Boosting (and Random Forests) is that these methods easily handle 

mixed covariates, meaning that clinical as well as genomic data can be easily incorporated. 

8. Challenges and Future Directions 

The no-free-lunch theorem states that no one classification method is optimal under all 

situations. Therefore it is beneficial to have a range of different methods for treatment subset 

prediction. Treatment interactions have been incorporated into each of the nonparametric methods 

reviewed above, but since the classification distance used for each method is unique, the type of 

treatment interaction is different for each method, as is the type of DR required. Many aspects of 

ASD require further research. For example, instead of a weighted voting method, an average 

score could be calculated over all the selected genes. This would eliminate need for tuning 

parameter .H  Also sensitivity status is a latent variable since some sensitive patients do not 

respond to treatment, while some nonsensitive patients do respond to treatment. This results in a 

mixture of normal distributions for each class-specific and treatment arm-specific status. An EM 

algorithm (Dempster, Laird, and Rubin, 1977 [34]) developed by Bishop (2006 [10]) addresses 

this situation. He also developed a Bayesian method which addresses some of the shortcomings 

of the maximum likelihood method for mixtures. Finally, many works also highlight the 

importance of pathways in heterogeneity. It would be beneficial then to more directly incorporate 

pathway analysis into ASD methods. Methods such as these warrant further research using real 

data sets and simulation studies to elucidate their performance under various scenarios. 
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PARAMETRIC CLASSIFICATION METHODS 

1. Some Historical Developments of Parametric Classification Methods 

The roots of discriminant analysis date back to before 1936, when Mahalanobis (1936 [111]) 

introduced the Mahalanobis distance, and Fisher outlined a method which used this same distance 

to discriminate between species of iris (1936 [48]). This became known as Fisher’s Discriminant 

Analysis (FDA). Welch (1939 [171]) used the likelihood ratio (LR) to show that FDA was 

equivalent to Linear Discriminant Analysis (LDA) when maximum likelihood (ML) estimates are 

used in place of true parameters. LDA assumes a multivariate normal distribution for the 

covariates. Wald (1944 [167]) incorporated prior population probabilities and misclassification 

costs.  

Other statisticians who played important roles in the early development of discriminant 

analysis include Pearson, who proposed a mixture of normal distributions for clustering (1894 

[123]), Neyman & Pearson (1933 [117]), who introduced the likelihood ratio test (LRT), and Rao 

(1947 [130]). Cox (1966 [31]) played an early role in the development of Logistic Classification 

Analysis or LCA (Anderson, 1972 [2]). Quenouille (1949 [128]) introduced the jackknife which 

reduces bias by successively leaving out one observation at a time, and Hills (1966 [78]) and 

Lachenbruch & Mickey (1968 [97]) introduced a method, closely related to the jackknife, of 

estimating error rates by omitting one observation from the computation of the discriminant 

function and using that observation to estimate error. This is the leave one out cross validation 

(LOOCV) method, which is one example of the more general method of cross validation (CV) 

which divides data into non-overlapping training and validation sets to build a model and estimate 

error. Lachenbruch and Mickey also pointed out the bias and optimism of the resubstitution 

method, which uses the same sample both to build a model and to estimate error.  
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These early methods were developed at a time when high throughput data (HTD) was not as 

prevalent. HTD typically have tens of thousands or more of features, together with sample sizes 

on the order of 100 or less. This situation is often referred to as p n  where p refers to the 

features and n  refers to the sample size. The early parametric methods mentioned above are not 

HTD-capable without some outside help. Many dimension reduction (DR) methods have been 

developed for HTD to address this situation. More recent nonparametric machine learning 

methods such as Random Forests and Boosting were developed specifically for HTD and have 

built-in DR techniques. At the same time, the earlier developed parametric classification methods, 

when used in conjunction with suitable DR techniques, often compare favorably to these more 

recently developed machine learning methods. For example a modified version of LDA, Diagonal 

Linear Discriminant Analysis (DLDA), which ignores correlation between features, outperformed 

Boosting and Random Forests in a comparison of methods by Dudoit et al. (2002 [39]) involving 

genomic data. Further work by Bickel & Levina (2004 [9]) and Fan & Fan (2008 [46]) showed 

reasons why DLDA often outperforms LDA in an HTD setting.  

L1 Regularization or L1R (Tibshirani, 1996 [157]) selects at most n features and shrinks 

coefficients of selected features towards 0. Thus it provides a way to naturally integrate the DR 

and classification steps. In contrast, L2 Regularization or L2R (Hoerl & Kennard, 1970 [80]) 

shrinks parameter estimates towards 0 or towards a common value, without eliminating any of 

them. L2R methods such as those introduced by Ledoit & Wolfe (2004 [99]) improve stability of 

covariance matrices. Developments such as these further enabled use of parametric classification 

methods in an HTD setting. Applications involving classification include Penalized Discriminant 

Analysis (Hastie, Buja, & Tibshirani, 1995 [74]), NSC (Tibshirani et al., 2003 [161]), 

Regularized Discriminant Analysis (Friedman, 1989 [58]), MLDA (Modified LDA, Xu, Brock, & 

Parrish, 2009 [177]) and penalized logistic regression for gene interactions (Park & Hastie, 2008 

[120]). 
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Treatment Subset Prediction 

In phase III clinical trials, it has increasingly been recognized that treatment agents only 

benefit a subset of patients enrolled in these studies. In cases where predictive assays cannot be 

developed before a phase III clinical trial, Freidlin & Simon (2005 [54]) proposed the Adaptive 

Signature Design (ASD) which predicts a subset of patients more sensitive to treatment based on 

gene expression data. Their specific ASD model used weighted voting and single gene logistic 

models which include gene-treatment interaction. The tuning parameter set consists of a 

parameter   to select predictive genes from the training set, a parameter R  to determine the 

threshold for the magnitude of the treatment arm odds ratio ( )OR  for a selected gene and patient 

in the validation set, and a parameter H to determine the threshold for the number of selected 

genes for a patient in the validation set having a treatment arm OR which exceed R. Subjects 

which have at least H selected genes meeting criteria for R are predicted to be sensitive to 

treatment. Type 1 error is partitioned between a test for overall treatment effect involving all the 

subjects and a test for treatment effect involving only the stage II patients predicted to be 

sensitive to treatment. Figure 5 gives more information. 

Other recent works in this area include Zhang, Tsiatis, Laber, & Davidian (2013 [179]), and 

Zhao, Tian, Cai, Claggett, & Wei (2013 [181]). 

Purpose of Chapter 

The purpose of this study is first to review and examine parametric classification methods, 

focusing on specific distance measures used to make a classification decision. These are specific 

to the classification method and are what make the method unique. Then extensions of these 

methods to treatment subset prediction can often be made by comparing these distances across 

treatment arms. Since no one classification method is optimal in all situations, it is advantageous 

to have available different methods for treatment subset prediction. 
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Organization of Study 

Section 2 covers notation and definitions. Section 3 is a brief introduction to parametric DR 

methods, with a focus on treatment subset prediction. Parametric classification models and rules 

are outlined in Section 4. Discussion and conclusions are in Sections 5, and challenges and future 

work are in Section 6. 

2. Notation and Definitions 

Notational convention follows that of Part 1 of this review. Subscripts D and V denote 

training and validation sets respectively, and nD and nV denote their sample sizes; iy  denotes a 

categorical or a continuous response for the ith subject. For two classes, 1ig   denotes the disease 

or relapsed class, and 0 or -1ig   denotes the other class; for more than two classes, 

{0,1,..., 1}ig G  ; covariate vectors 1 2{ , ,..., }i i i imx x xx and 1 2{ , ,..., },i i i iz z zz  where 

p m  , denote respectively the clinical and high-dimensional covariate vectors for the i
th 

subject. The covariate vector for the ith subject is then{ , }i ix z . In the training set ˆ
k  denotes the 

average of the kth  feature, ˆ
gk  denotes the average of the kth   feature over subjects that belong to 

the specific class ,g and ˆ
gtk  denotes the average over the subset of subjects in class g that have 

also been assigned to treatment arm ,t where {0,1}.t   

The term feature refers either to covariates or functions of covariates, and the term interaction 

refers to a statistical interaction [30]. More detail can be found in Part 1 of this review. Table 5 

provides a list of acronyms and definitions used in this chapter. 
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Table 5: List of acronyms, definitions, and sections where acronyms are used. 
Acronym Associated Words Description Sections 
ASD Adaptive Signature Design Method to predict subset of patients 

responding differently to treatment; see Figure 
5 

1,3-6 

CS Compound Symmetry See Table 7  
CV Cross-Validation  1,3-6 
DLDA Diagonal Linear Discriminant Analysis See Table 7 4 
DLLR Difference in LLR  5 
DR Dimension Reduction  3-4 
ECM Expected Cost of Misclassification  4 
FE Feature Extraction Class of DR methods 3 
FDA Fisher’s Discriminant Analysis See Table 7 4 
FS Feature Selection Class of DR methods 3 
HTD High Throughput Data  1,4 
LASSO Least Absolute Shrinkage and Selection 

Operator 
Same as L1R- see Table 6 1,3 

L1R L1 Regularization Same as LASSO - see Table 6 1,3 
L2R L2 Regularization Same as Ridge Regression - See Table 6 1,3 
LCA Logistic Classification Analysis See Table 7 1,4,5 
LDA Linear Discriminant Analysis See Table 7 1,4 
LOOCV Leave-One-Out Cross-Validation  1 
LR Likelihood Ratio  1,4 
LRT Likelihood Ratio Test  1,4,5 
LLR Log Likelihood Ratio  4,5 
MAD Median Absolute Deviation Robust regression method 4 
ML Maximum Likelihood  1,4,5 
MLDA Modified Linear Discriminant Analysis See Table 7 4 
mRNA Messenger RNA  6 
miRNA microRNA  6 
NSC Nearest Shrunken Centroids HTD classification method 5.2 
OR Odds Ratio  1,4-5 
PC Principal Components  3 
PCA Principal Components Analysis See Table 6 3 
PDA Penalized Discriminant Analysis See Table 7 4 
PLS Partial Least Squares See Table 6 3 
QLDA Quadratic Linear Discriminant Analysis See Table 7 4 
QDA Quadratic Discriminant Analysis See Table 7 4 
RDA Regularized Discriminant Analysis See Table 7 4 
SCRDA Shrunken Centroids RDA  4 
SNP Single Nucleotide Polymorphism  6 
SPCA Sparse PCA See Table 7 3 
SPLS Sparse PLS See Table 7 3 

 

3. A Brief Introduction to Parametric Dimension Reduction with a Focus on Treatment 

Subset Prediction 

The application of DR methods in an HTD setting is an area still undergoing rapid 

development. As a recent title of a review of DR methods by Fan & Lv (2010 [47]) suggests, 

selectivity is needed for a review of DR itself.  
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Univariable Feature Selection for Large Scale Dimension Reduction 

Fan & Fan (2008 [46]) demonstrated that under certain conditions, a t test for each HTD 

feature comparing differential expression between the non-responsive and responsive group can 

be used to reduce dimensionality from ultrahigh to a moderate scale below or on the order of the 

sample size n . This is a univariable Feature Selection (FS) method. The features could be ranked 

and selected by p-value, false discovery rate (Benjamini & Hochberg, 1995 [8]), or the absolute 

value of a t-statistic. The empirical Bayes t statistic (Smyth, 2004 [150] ) performed well across a 

range of sample sizes (Jeffery, Higgins, & Culhane, 2006 [91]). Methods such as cross-validation 

can be used to select a cut-off value to determine features for use in the prediction rule.  

However, as stated in Chapter 1, a test comparing gene expression means for the two 

classification groups may not prove useful in preserving features containing information 

regarding treatment subset prediction. A more appropriate method used in simulations in Freidlin 

et al. (2010 [55]) compares differential gene expression between enhanced and standard treatment 

in the responsive group to differential expression in the non-responsive group. The equation is in 

Chapter 1.  

Dimension Reduction Impacts Classification Performance 

In the Dudoit et al. (2002 [39]) study, DLDA performed well while FDA performed poorly 

when the same number of selected features were used for each method. However FDA had error 

rates comparable to DLDA when fewer features were selected in the DR step. The explanation 

was that estimates of the pooled within-class covariance matrix for FDA become unstable when 

the number of selected features is large. Since DLDA does not estimate the non-diagonal 

elements, it eliminates variance associated with these parameter estimates in exchange for some 

increase in bias.  

Optimization of DR for classification depends on the classification method. The weighted 

voting method used in Freidlin & Simon’s ASD model addresses this by including the DR tuning 

parameter as one in a set of inter-related tuning parameters. In this way DR is embedded in the 
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classification process. The set of tuning parameters chosen is the one which (using CV on the 

training set only) minimizes the p-value in a treatment arm comparison of predicted sensitive 

patients.  

In selecting the list of plausible tuning parameters for this ASD implementation, it is 

important to take into account factors that influence optimal cutpoint selection. These include the 

sample size, the number of features, and the classification method. For example, if the 

classification method is LDA, the number of selected features *p  must be 2Dn   or less (for 

two classes). Moreover, it has been reported that LDA is unstable if Dn  is not at least 5 or 10 

times *p  (Jain & Chandrasekaran, 1982 [90]). 

Methods used after Initial Large Scale Feature Selection  

Though univariable FS is often preferred for an initial large scale screening, one drawback is 

that it does not take into account correlation between features. Therefore it is possible that 

features selected in this manner will be highly correlated.  

Principal Components Analysis 

One solution is to use a univariable FS method first to reduce features to some number *p , 

say less than or on the order of Dn . Then principal components analysis (PCA) can be used to 

extract a smaller number of uncorrelated features for use in treatment subset prediction in the 

validation set. The method of Fisherfaces (Belhumeur, Hespanha, & Kriegman 1997 [7]) used a 

similar approach. 

PCA was originally proposed by Pearson over 100 years ago (1901 [124] ) and further 

developed by Hotelling (1933 [83]). The principal components of *p  features are the *p

orthogonal directions which maximize variance between the features. The first principal 

component is the linear combination which maximizes the variance between the features, and the 

second PC is the linear combination orthogonal to the first PC which maximizes the remaining 
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variance, and so on. A number of principal components much smaller than m can usually be 

found which explains most of the variance of the original features. However as pointed out by 

Bickel & Li (2006 [5]), PCA breaks down when :p n  “…not only does the empirical 

covariance matrix become singular for p n , but , …, if ,  0 ,p
c c

n
    the empirical 

eigenvectors and eigenvalues are grossly inconsistent in terms of estimating the corresponding 

population quantities.” Therefore PCA may not be an appropriate choice for an initial screening 

when p n . To address this issue, penalized methods such as sparse principal components (Zou, 

Hastie, & Tibshirani, 2006 [185]) have been developed.  

One difference between PCA and other DR methods is that PCA  does not make use of 

association between explanatory and response variables. The next method is one way of 

addressing this issue. 

Partial Least Squares 

Partial least squares (PLS) “seeks directions that have high variance and have high correlation 

with the response” (Hastie, Tibshirani, & Friedman, 2009 [75]). It was proposed by Wold in the 

1960’s as an application for chemometrics for regression and DR (Geladi & Kowalski, 1986 

[63]). Boulesteix (2007 [13]) compared applications of PLS in HTD. Nguyen & Rocke (2002 

[118]) applied PLS to cancer classification. There are similar shortcomings in p n  problems 

for PLS as for PCA, and penalized methods such as Sparse PLS (Chun & Keleş, 2010 [27]) have 

been developed to help address this issue.  

L1 and L2 Regularization Methods  

There are other methods that could be used in this second step as well. For example L1R 

methods constrain the sum of the absolute value of the coefficients to be a constant. This results 

in shrinkage of regression coefficients and selection of at most n  features depending on the 

magnitude of the penalty term(s). This enables some L1R methods to be used in a first step DR as 

well. Methods using L2R constrain the sum of the squares of the coefficients to be a constant 
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value. This has the effect of shrinking coefficients towards a constant value without setting them 

equal to that constant. In so doing degradation due to correlation is reduced. One example is the 

L2R logistic regression for gene-gene and gene-environment interactions introduced by Park & 

Hastie (2008 [120]). This method allows categorical factors such as treatment to be included in 

interactions. Higher order gene-gene or gene-treatment interactions can be included. The 

Adaptive LASSO (Zou, 2006 [184]) allows different penalty terms for each covariate. The elastic 

net (Zou & Hastie, 2005 [183]) is a mixture of L1R and L2R and encourages strongly correlated 

features to enter or leave the model together. The Group LASSO enables penalty terms to be 

selected differently for different features, or for selected groups of features (Yuan & Lin, 2006 

[178]). Selection of groups makes it possible to select, for example, genes involved in a biological 

pathway. Jacob, Obozinski, & Vert (2009 [89]) extend Group LASSO to allow for overlap, as 

might happen with genes in more than one biological pathways. Table 6 provides more 

information on DR methods including software implementations. 
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Table 6: Parametric DR methods and software implementations. 
Method Description R Packages SAS Software 
PCA Principal components analysis – extracts a smaller 

number of uncorrelated features from a larger set of 
possibly highly correlated ones. Breaks down in 
p>>n situations. 

pls Proc princomp, proc factor 

SPCA Modification to PCA which enables use in p>>n 
data. 

pcaPP, PMA, elasticnet * 

PLS Partial least squares – like PCA, but also takes into 
account association between features and response 
variable (and therefore can also be used as 
classification method). Breaks down in p>>n 
situations. 

pls, caret Proc pls 

SPLS Modification to PLS that enables use in p>>n 
situations. 

spls * 

L1R (LASSO) Constrains sum of absolute value of coefficients to 
be a constant depending on penalty term. Shrinks 
parameter estimates towards 0, allowing some to be 
equal to 0; selects at most n features out of p. 

penalized, glmpath, 
LiblineaR, elasticnet, 
lassoshooting 

* 

Adaptive LASSO Allows different penalty terms for each feature. lqa, parcor, lars * 
Group LASSO Allows penalty terms to be different for each feature 

or for selected groups of features. Has been 
extended to account for overlap (Jacob, Obozinski 
and Vert, 2009). 

grplasso, grpreg, SGL, 
stan𝑑𝐺𝐿, gglasso 

 

L2R (Ridge 
Regression) 

Constrains sum of the squares of parameter 
estimates to be a constant, depending on penalty 
term. Shrinks parameter estimates towards a 
common value or towards 0 without eliminating any 
of them. Can be used to stabilize covariance 
matrices. Shrinks coefficients of correlated 
predictors towards a common value. Ideal if there 
are many predictors all with non-zero coefficients. 

LiblineaR, glmnet, lrm, 
penalized 

* 

Combined L1R and 
L2R 

Constrains parameter estimates to be a sum of both 
the L1 and L2 constraints; also see Park and Hastie 
2008. 

elasticnet, glmnet  * 

*For SAS code on penalized/regularized methods, one can search sites such as http://www.sas-programming.com/2010/09/regularized-discriminant-analysis.html  
and http://sasdiehard.blogspot.com/2011/03/fitting-logistic-regression-in-data.html for guidance.

http://www.sas-programming.com/2010/09/regularized-discriminant-analysis.html
http://sasdiehard.blogspot.com/2011/03/fitting-logistic-regression-in-data.html
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4. Parametric Classification Models and Rules 

Fisher’s Discriminant Analysis 

Fisher’s idea was to find the compound distance which is the linear combination of 

covariates, say *
1 1 * *,...,i i p ipz z z     (or *

i iz  λ'z , where λ and 
iz  are the corresponding p* - 

length vectors), which maximizes the between-class distance with respect to the within-class 

variance. The between-class distance is  

 * * *
1 0 1 0ˆ ˆ ˆ ˆ ˆ ,d     λ'     

where 0 1ˆ ˆ ˆ{ , }g     denotes the p*- length vectors of class specific feature means estimated 

from the training set;  and where *p  is the number of selected features. Note that * *
1 0ˆ ˆ,  ,    and 

*ˆ
d  are scalars. The vector which maximizes the compound distance between classes *ˆ

d with 

respect to its pooled within-class variance can be found by differentiating and setting equal to 0 

the quantity *2 *ˆ /d s  with respect to λ , where the scalar *s  λ'SSλ , and SS is the pooled within-

class sum of squares matrix for the original covariates. This leads to a system of *p linear 

equations, where * 2Dp n   is the number of selected features. The solution is:

 1
1 0ˆ ˆ .  SS    

In the case of equal class sample sizes, a classification decision can be based on which class 

the compound distance for the subject is closest to: 

2* *

*

ˆ
ˆ arg min ,

ˆ
i g

i g

z
g





  
       

where * * *
0 1ˆ ˆ ˆ{ , }g    are class specific means and *̂ is the 

pooled within-class standard deviation of the compound measures estimated on the training set. 

Figure 6 gives a graphical depiction using the square-root of the squared distance above. 
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Alternatively, a cut-off point can be determined using CV. For example, 

2 2* * * *
0 1

* *

ˆ ˆˆ .
ˆ ˆ

i i
i

z z
g I C

 

 

       
       
       

  

 

Figure 6: Use of compound measure in FDA to allocate new subjects; *
0̂  and *

1̂   are the average of the 

compound  measures over all the subjects for class g=0 and g=1 on the training set; *2̂  is the within-class 

pooled variance of the compound measure, also calculated from the training set; * *
0ˆ ˆ/  and * *

1ˆ ˆ/  are 

the standardized class compound measures, and * * * * * *
1 0ˆ ˆ ˆ ˆ ˆ ˆ/ / /d        is the difference between 

these two class compound measures. The standardized compound measure for each subject i in the 
validation set is * *ˆ/ .iz  Predicted class ˆ

ig  is determined by which standardized class compound measure,
* *ˆ ˆ/g  , the standardized compound measure * *ˆ/iz  is closest to in terms of the standardized compound 

distance , 
 

2* *

*2

ˆ
ˆ

i gz 




, or,equivalently, to its square root. The cut-off for class membership is shown by 

the dashed line half way in between the two classes (assuming equal sample sizes for classes). In this case, 

if 
 

2* *
0

*2 *

ˆ ˆ
,

ˆ ˆ2
i d

z  

 


 then ˆ 0.ig   Otherwise ˆ 1.ig   
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Since no distributional assumptions are used in the derivation of the compound measure or 

distance, authors such as Rencher (1991 [131]) classified FDA as nonparametric or distribution-

free. Moreover Ripley (1996 [134] ) pointed out that “a t-distribution with a moderate number of 

degrees of freedom is often regarded as a better fit” than a normal distribution. This robust 

method is included in the R functions lda in package MASS (Venables & Ripley, 2002 [165]).  

The Likelihood Ratio and Classification 

Let Z denote the n by p gene expression profile matrix (the matrix over all features, and over 

both the training and the validation set) , and let gZ  denote the matrix of rows of Z consisting of 

1,...,i n    such that .ig g  Suppose gZ follows a multivariate distribution with parameter 

vector .gθ θ  Each subject belongs to one and only one of G classes, but class membership for 

subjects in the validation set is not known. In the special case where 2G  , then an LRT can be 

used to assign subject i to one of the two classes. The hypotheses are: 

1

0

: 1
: 0.

H g

H g



  

The LR for the ith subject is then equal to the ratio of the product of the prior class 

probabilities g  and class-dependent densities ( | )i gf θ θz where here iz is the p-length gene 

expression profile vector for subject i:  

1 1

0 0

Pr( 1, ) Pr( 1)Pr( | 1) ( | ) ,
Pr( 0, ) Pr( 0)Pr( | 0) ( | )

i i i
i

i i i

g g g f
LR

g g g f





   
  

   

z z z

z z z

θ θ

θ θ
or log( ).i iLLR LR  

Note that this rule assumes knowledge of the true underlying class distributions. In this 

unusual scenario, no model building on a training set is necessary. The classification rule can then 

be expressed as ˆ ( 0),  where {0,1}.i ig I LLR g    Now if Z follows a multivariate normal 

distribution, then, assuming a common covariance matrix Σ  for the two classes: 
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1
1

11 1

10 0 0

1exp ( ) ' ( )
( | , ) 2 ,

1( | , ) exp ( ) ' ( )
2

i i

i

i
i i

i

f

f
LR

 

 





  
              
           


1

0 0

z z
z

z
z z

μ Σ μ
μ Σ

μ Σ
μ Σ μ

 

where g is the p-length vector of true means for the columns of .gZ  Extension to { , }i ix z is 

straightforward. 

The log likelihood ratio is: 

       1 11

0
0 0

1 1log ' ' .
2 2i i i i iLLR





    
         

  
1 1μ Σ μ μ Σ μz z z z   

Note that    1'i gig

 μ Σ μz z is the Mahalanobis distance.  

Now, if the true parameter values are not known, then it is necessary to estimate them from a 

training set where class membership is known. Substituting ML estimates for true parameter 

values: 

       1 11

0
0 0

ˆ 1 1ˆ ˆ ˆ ˆlog ' ' ,
ˆ 2 2

i i i i iLLR




    
         

  
1 1μ S μ μ S μz z z z  

where S is the pooled within-class sample covariance matrix from the training set, and ˆ
gμ is the 

p*- length vector of ML estimates from the training set for .g  Here iLLR  for subject i in the 

validation set is used as the classification distance in place of iLLR since true parameter estimates 

are not known. Note that when the true parameter values are known, there are no restrictions on 

the number of features that can be used. However the true values are almost always not known. In 

this case the number of selected features p* must be less than or equal to 2.Dn    The 

classification rule is then: ˆ ( ),  where {0,1}.iig I LLR C g   Note that a cut-off C may be 

used in place of 0 since there is no longer complete knowledge of the true underlying 

distributions of gZ . The cut-off may be chosen using CV.  
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Numeric Example 

Take 0ˆ ' 0,1μ  , ˆ ' 1,2
1
μ , 

2 1
1 2

S , equal prior class probabilities, and ' 2,2
i
z . Then  

 log(1) (1/ 2)(2 / 3) (1/ 2)(2) 0 2 / 3 2 / 3.iLLR         Then, if 

ˆ0, (2 / 3 0) 1.iC g I      

Relationship Between Linear Discriminant Analysis and Fisher’s Discriminant Analysis 

The distance    
' 1

0 0ˆ ˆ
i i

 Z μ S Z μ is a standardized version of Fisher’s compound 

distance iDC and therefore LDA results in the same classification rule as FDA when ML 

estimates are substituted for true values. 

Diagonal Linear Discriminant Analysis 

For DLDA, and substituting ML estimates for true parameter values, the equation further 

reduces to: 

* *2 2 2 2
11 1

1

0
0

1 1ˆ ˆ ˆ ˆ( ) / ( )
ˆ

log ,
2ˆ

/
2

p p

i ik k k ik k kk k
LLR z z


 


 

 

 
 



 
     

 
     

where 2ˆ
k is the estimate (from the training set) for the pooled within-class variance for the 

k
th selected gene, and ˆ

gk  is the kth element of vector ˆ .gμ  For DLDA, it is no longer necessary 

that *p  be less than or equal to 2Dn  , since means and variances can be estimated separately 

for each gene; however performance will still degrade unless *p is much less than .Dn   

The classification rule is the same as before – i.e. ˆ ( ),  where {0,1}.iig I LLR C g    For 

a weighted voting method (Breiman, 1996 [16]), the summation sign would be eliminated and 

separate models would be used for each selected feature. A cut-off can be chosen for the 

'ikLLR s  using nested CV, and the subject assigned to class 1g   if the number of genes having 

an ikLLR  exceeding this tuning parameter, say R, is equal to or greater than the value of another 
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tuning parameter, say H, also chosen using nested CV. This can be expressed as 

*

1

ˆ ( .
p

iki

k

g I I LLR R H


  
    

  
   

Likelihood Ratio Test and Misclassification Costs 

Different misclassification costs for each class ˆ(1 , ) ( 1 , ),  {0,1}c g g c g g g g     can 

also be included in the LRT. In this case the classification rule is 

1 1

0 0

(0,1) ( | )ˆ log 0 .
(1,0) ( | )

i
i

i

c f
g I

c f





 
  

 

z

z

θ θ

θ θ
 This is the expected cost of misclassification (ECM) 

rule (Johnson & Wichern, 2007 [92]). True parameters can be replaced with their maximum 

likelihood estimates as before. Note that, though a method such as CV could still be used here to 

assign subjects, care is needed to assign appropriate weights to account for misclassification costs 

and prior population probabilities. The distance used to make a classification decision in this case 

is then 1 1

0 0

ˆˆ (0,1) ( | )log .ˆˆ (1,0) ( | )
i

i

c f

c f





 
   

θ θ

θ θ

z

z
 For simplicity, this distance will also be referred to as an 

LLR in this work.  

Numeric Example  

Take previous values for ˆ  and ,g iμ z  and take Σ = S  in the previous example: with 

 

 

0,1
2,

1,0
c

c
 and 1

0

ˆ
ˆ



=1, then log(1*2*2 / 3) 0.288,iLLR    and, if C is chosen as 0, 

ˆ (0.288 0) 1.ig I     

A Note on Diagonal Linear Discriminant Analysis 

The naïve Bayes DLDA, which compared favorably to methods such as Boosting and 

Random Forests in Dudoit et al.’s 2002 study [39], sets the non-diagonal elements of the within-

class covariance matrix to 0, and therefore ignores correlation between features. Naïve Bayes 

methods have been observed to work well in many situations despite the fact that the assumption 



60 
 

is not generally true (Bickel & Levina, 2004 [9], Hastie et al., 2009 [75]). There is a trade-off 

between bias reduction that results from estimating more covariance terms, and the increased 

variance resulting from these estimates. In many situations the increased variance outweighs the 

benefits of bias reduction. 

Diagonal Linear Discriminant Analysis and Nearest Shrunken Centroids 

The NSC method is a penalized form of DLDA proposed by Tibshirani, Hastie, Narasimhan, 

& Chu (2002 [160]). It includes use of a tuning parameter which has the effect of shrinking 

distance of genes from class centroid ˆ( )gk to overall centroid ˆ( ).k  Genes which have a 

shrunken distance of zero for all classes are effectively filtered out of the classifier. In this way 

DR is naturally integrated into the classification process. The tuning parameter is selected based 

on nested CV. Increasing the tuning parameter results in fewer selected genes. It was found that 

both training error and prediction error were minimized with a tuning parameter near 4.34. Guo, 

Hastie, & Tibshirani (2007 [68]) introduced a related method called shrunken centroids RDA 

(SCRDA). 

Modified Linear Discriminant Analysis 

MLDA (Ledoit & Wolfe, 2004 [99]) reduces bias and improves stability of the LDA 

covariance matrix by shrinking the sample eigenvalues towards a common mean. Table 7 

provides information on parametric classification methods, including regularized methods and 

software implementations. 
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Table 7: Some parametric classification methods and software implementations. 
Method Description R Software SAS Software 
LCA Classification using logistic regression. glm(base), lrm(rms), 

polr(MASS) 
Proc logistic, 
Enterprise Miner 

Penalized LCA Classification using penalized logistic 
regression (L1, L2, or both). 

logistf(logistf), 
penalized(penalized), glmnet, 
elasticnet, also see Park and 
Hastie, 2008 

Proc logistic 

FDA/LDA  

Classification method maximizing 
between-class squared distance w.r.t. 
within-class squared distance. Assumes 
common within-class covariance matrix. 

lda(MASS) Proc discrim 

QDA 
Same as FDA, except allows within-class 
covariance matrix to be different for each 
class.  

qda(MASS) Proc discrim 

DLDA 
Uses diagonal within class covariance 
matrix (non-diagonal elements set equal to 
0). 

diagDA(sfsmisc) 
stat.diag.da(WGCNA) Proc discrim 

QLDA Same as DLDA, but allows unequal 
diagonal elements for each class. diagDA(sfsmisc) Proc discrim 

Linear 
Regression 
Classification 

Formulates FDA as regression – gives 
same classification rules when using 
appropriate numeric values for classes. 

Any package for linear 
regression 

Any procedure 
for linear 
regression 

RDA  

Shrinks unequal within-class covariance 
matrices assumed in QDA towards equal 
covariance matrices assumed in FDA; also 
shrinks individual class covariance 
matrices towards identity matrix 
multiplied by average of eigenvalues; 
amount of shrinkage in each direction 
determined by cross validation. 

rda(klaR), rda(rda) Proc discrim 
with sample code 

PDA 
Formulates FDA as a regression problem. 
Then penalized methods for regression 
can be used. 

mda(mda), pdmclass        

Penalized 
DLDA  

Uses diagonal within class covariance 
matrix, and shrinks diagonal elements 
towards common value or towards 0. 

penalizedLDA 
(penalizedLDA), pamr  

Penalized 
DQDA 

DQDA with diagonal elements shrunk 
toward 0 smoothed. sdqda(sparsediscrim)  

MLDA Shrink sample eigenvalues towards 
common mean using closed form solution. 

 Ledoit & Wolfe 2004, 
Xu,Brock, & Parrish 2009  

CS Non-diagonal elements of covariance 
matrix assumed equal. 

Not aware of any 
implementation   

Weighted 
Voting Prediction using single gene models. votingLinearPredictor(WGCNA)  

 

Linear Regression and Classification 

Bishop (2006 [10]) and Duda, Hart, & Stork (2001 [38]) showed that linear regression, with 

appropriately chosen cutoffs for the two classes, has the same classification rule as FDA and 

LDA. This was also implied in Fisher’s 1936 work. Robust regression methods such as Median 

Absolute Deviation (MAD) or M-regression could also be used, though in these cases the 

classification rule will not be the same as for FDA or LDA using ML estimates.  
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If using the linear regression form of LDA, the class variable G is used as the response 

variable, and gene expression Z and other covariates are used as explanatory variables. The 

classification rule for subject i in the validation set is is 

0 1 1 2 2
ˆ ˆ ˆ ˆ ˆˆ ˆsign( ... ... ),i i i i m im ilg y x x x z            where ˆ { 1,1}.ig    It follows that 

the linear regression distance used for classification is ˆ .iy  Interaction terms can also be included. 

The coefficients are estimated from the training set, using response variable { 1,1}y   for class

{ 1,1},g    assuming equal sample sizes. The response variable can also be adjusted for 

unequal sample sizes. See Bishop (2006 [10]) or Fisher (1936 [48]) for details. Nested CV can 

also be used to determine an appropriate cut-off C; i.e. ˆ ˆsign( ).i ig y C    

Numeric Example 

Using nested CV, the tuning parameter set selects three genes on the validation set. A multi-

gene linear regression is used on the validation set. Sample size for the two classes are equal. 

Estimated parameters from the training set are 0 1 2 3
ˆ ˆ ˆ ˆ0.4,  0.5,  0.4,  and 1.2.           

Gene expression for the three genes for subject i  in the validation set are 

1 2 31.1,  0.8,  and 1.3.i i iz z z   Taking 0,C   ˆ sign( 0.4 ... 1.2*1.3) 1.ig       

Linear Regression Classification with a Continuous Response as Outcome Variable 

In some settings a continuous variable can be used as the outcome variable. This is more 

natural for methods such as linear regression. This approach was used in Rai, Cambon, Pan, 

Gargett & Chaires (2013 [129]) in an application involving differential scanning calorimetry 

plasma thermogram analysis. Residuals were used as a distance measure. Two models were 

compared, one assuming 0ig   and one assuming 1ig  for each subject i in the validation set. 

Parameters for the models were estimated from the training set, and feature values ikx  were taken 

from subjects in the validation set. Subjects in the validation set were allocated to the class whose 

model had the smallest residual distance. In this case the residual distance  was the average 
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number of residuals whose absolute value exceeded a specified quantile: i.e.: 

 0 1ˆ sign ,ig p p   where gp  is the average proportion of residuals for subject i  with absolute 

value exceeding a specified quantile, under the model assuming .ig g  The specified quantile 

can be estimated from the training set. The distance used for classification in this method is then 

0 1.p p  

Another advantage of regression methods for classification is the wealth of related tools that 

have been developed. Splines (Friedman, 1991 [59]), additive models (Hastie & Tibshirani, 1987 

[73]), regularized methods and quantile regression (Koenker & Bassett, 1978 [95]) are some of 

many examples. Importantly for treatment subset prediction, one can naturally include treatment 

interactions in regression models to make a classification decision. The classification method 

outlined next, LCA, is a regression method and can also make use of these approaches.  

Logistic Classification 

Many works such as Press & Wilson (1978 [127]) have compared LCA and LDA. It has been 

found that their performance is surprisingly similar under many scenarios. LDA will perform 

better when the normality assumption is approximately true (or when suitable transformations can 

be applied which results result in this assumption being approximately true), and LCA will have 

superior performance when this assumption is severely violated (Hastie et al., 2009 [75]). 

Logistic regression takes the form

1 1 2 2 1 1logit(y| , ) ... ,i i 0 i i m im i ix x x z z          x z where 

Pr ( =1| , ){0,1},  and logit( )= log .
1-Pr ( =1| , )

i i
i

i i

y
y p

y

 
  

 

x z

x z
  Logistic regression is in the class of 

generalized linear models, and the logit is the link function. Covariates can be continuous or 

categorical, and this allows clinical as well as genomic features to be included in the model 

simultaneously. Logistic classification is simply logistic regression used for classification. For 

LCA, the categorical response is the class variable g. Appropriate cut-offs can be used to 
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determine classification. For example, ˆ (logit( ) ),  {0,1},i i ig I p C g    where the constant C 

can be chosen as 0 or selected through nested CV. The distance for LCA is then the logit. Since 

the logit is the log of the odds, it is then natural to use the treatment arm OR to evaluate the 

difference in this distance between treatment arms for treatment subset prediction. This is the 

approach taken in Freidlin & Simon’s version of ASD. 

Single-Gene Logistic Classification-Treatment Subset Prediction 

This version of ASD employs single gene logistic models to predict a subset of patients more 

likely to respond to treatment. In that method the treatment arm OR is used as a distance in a 

weighted voting procedure to determine sensitivity to treatment. The single gene logistic model 

for subject i and gene k is: logit( | , )i ik i k i k i ikp z t t t z     , where it  is the treatment arm 

indicator for subject i  in the validation set, ikz is gene expression for gene k and subject i, and 

 and k ik   are coefficients for treatment and treatment-gene interaction respectively. Main 

effects for gene expression are also included in the implementation of Scher, Nasso, Rubin & 

Simon (2011 [144]), ]), though the model is different from the one shown here. When patient 

sensitivity prediction for the final validation set is undertaken, outcome results for the training set 

are known, as are gene expression results ikz for subject i  in the validation set, even though 

outcome results ig  are not. Gene-weighted voting estimates for sensitivity to treatment for subject 

i  can then be obtained using the treatment arm .OR  Subject i has not necessarily been assigned 

to a treatment arm, however the treatment arm OR compares both treatment assignment 

scenarios: i.e. 
ˆ ˆˆ ˆˆ ˆ/k k ik k k ikz z

ikOR e e e
      

   using the parameter estimates on the training set 

and gene expression ikz  from the validation set. A value of ikOR exceeding R  results in a vote 

by gene k for subject i  being sensitive to treatment. This can be expressed as:
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*

1
( ) ;

p

iki

k

Sn I I OR R H


  
    

  
  where Sn  is an indicator variable for subject sensitivity, and 

1,..., *k p  are the genes selected from the DR step. 

The assumed model for the weighted voting method is that some but not all sensitive genes 

for a subject sensitive to treatment are overexpressed. The weighted voting tuning parameters 

determine the fraction of genes and the amount of overexpression in order for the subject to be 

predicted sensitive. However a simplified approach may be to eliminate tuning parameter H by 

calculating a summary score over all the selected genes for a subject. Figure 1 is a detailed 

flowchart of the ASD method. 

The assumed model for the weighted voting method is that some but not all sensitive genes 

for a subject sensitive to treatment are overexpressed. The weighted voting tuning parameters 

determine the fraction of genes and the amount of overexpression in order for the subject to be 

predicted sensitive. However a simplified approach may be to eliminate tuning parameter H by 

calculating a summary score over all the selected genes for a subject. Figure 1 is a detailed 

flowchart of the ASD method. 

Multivariable Logistic Classification 

The LCA method used as an example in Freidlin & Simon’s work was a single gene logistic 

model. However multivariable multi-gene models can also be used for ASD, as in Scher et al. 

(2011 [144]); note that in this work a multivariable proportional hazards model was used. A 

multivariable LCA approach was not used in the Dudoit et al. 2002 work (which did not involve 

an ASD implementation) due to issues of class separation. In that case ML estimates do not 

converge. Use of a penalized ML method (Heinze & Schemper, 2002 [76]) is one way to address 

this, and this option is readily available in R or SAS software. An advantage of the L2R 

multivariable logistic method of Park & Hastie (2008 [120]) is that it enables incorporation of 

higher order gene-gene interactions. This method might therefore be preferred to LDA when it is 
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felt that higher-order interactions are not ignorable. Note that since higher order gene-gene 

interactions are involved, a prior DR method may still be needed in a typical HTD setting. 

5. Discussion and Conclusions 

Methods such as LDA and LCA are constructed using distance metrics. The example of the 

ASD method in Freidlin & Simon’s work used the treatment arm OR as a distance in a weighted 

voting method to determine sensitivity to treatment. Other distance measures and other methods 

can be incorporated into treatment subset prediction. The LLR measures the distance of a subject 

from the border of the two classes. An LLR of 0 indicates the borderline between two classes. 

The sign and magnitude can be used to develop criteria for voting or allocating a subject to a 

given class. Sensitive subjects can then be predicted using methods which incorporate this 

distance. Using single gene densities, the equation for the difference in the ikLLR  between the 

two treatment arms for gene k and subject i  in the validation set is:

11 11 10 10
, 1 , 0

01 01 00 00

ˆ ˆˆ ˆ( | ) ( | )log log ,ˆ ˆˆ ˆ( | ) ( | )
ik k ik k

ik ik t ik t

ik k ik k

f z f z
DLLR LLR LLR

f z f z

   

   
      

where ˆ( | )ik gtkf z  is the density for gene k with estimated parameter vector ˆ ,gtk  and evaluated 

at .ikz The parameter vector ˆ ,gtk is conditional on class g, treatment arm t, and gene expression 

for gene k. Estimated prior class probabilities ˆ
gt  are also conditional on class g and treatment 

arm assignment t, but not on gene k. The estimates for parameters and prior class probabilities are 

derived from the training set. 

Numeric Example 

From training set control arm there are 25 subjects who responded and 75 subjects who did 

not respond to treatment. On the training set treatment arm, 40 patients responded and 60 did not. 

Then 10 00ˆ ˆ/ 0.333   and 11 01ˆ ˆ/ 0.667.    Gene expression density parameters for gene k  

are estimated from the training set (after appropriate gene expression normalization). If Gaussian 
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densities are used, then densities for gene k conditional on class and treatment arm and evaluated 

at ikz  are 2ˆ ˆ( | , ).ik gtk gtkf z    Estimates of parameters conditional on  response status g and 

treatment arm t can be derived from the training set used to estimate corresponding densities. 

Suppose for selected gene k we have 

 2ˆ ˆ( , ) (0,0.04),(0.1,0.04),(0.1,0.04),(0.6,0.16)gtk gtk    for 

          , 0,0 , 1,0 , 0,1 ,1 ;, 1g t  gene expression 0.9.ikz   Then 

2
11 11

2
01 01

2
10 10

2
00 00

ˆ ˆ( | , ) (0.9 | 0.6,0.16) =1125,
ˆ ˆ( | , ) (0.9 | 0.1,0.04)

ˆ ˆ( | , ) (0.9 | 0.1,0.04) and 8.373.
ˆ ˆ( | , ) (0.9 | 0,0.04)

ik k k

ik k k

ik k k

ik k k

f z f

f z f

f z f

f z f

 

 

 

 



 

 

Therfore log(1125*2 / 3) log(8.373*1/ 3) 5.59.ikDLLR     

Then, if 5.59 > ,R gene k  would cast a vote for sensitivity for patient i  in the validation set. 

The parameter set{ , , }R H could, as before, be selected using nested CV or the nested bootstrap 

from a list of prospectively chosen turning parameter sets.  

Alternatives to Weighted Voting 

Distances such as these can be used in an ASD treatment subset prediction method 

incorporating tuning parameters very similar to ,  , and .R H  Alternatively, if the weighted 

voting assumption that some but not all selected genes are overexpressed is deemed not 

appropriate, tuning parameter H can be eliminated, and the cut-off R can be used on the average 

ikDLLR of the selected genes for a subject. If the naïve Bayes assumption is severely violated, a 

multivariable method such as LDA could be used to calculate iDLLR  over all the selected 

features for subject i  in the validation set. This equation then becomes: 

11 11, .1 10 10, .0

01 01, .1 00 00, .0

ˆ ˆ ˆ ˆ( | ) ( | )
log log ,

ˆ ˆ ˆ ˆ( | ) ( | )
i i

i

i i

f f
DLLR

f f

 

 
 

S S

S S

 

 

z z

z z
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where ˆ
gt  indicates estimated prior class probabilities for class g and treatment arm t, ˆ

gt  is the  

estimated vector of means for selected features conditional on class g and treatment arm t, .tS  

denotes the pooled sample covariance matrix for treatment arm t, and iz is the vector of selected 

features for subject i  in the validation set. As before, all estimates are from the training set. 

Tuning parameter H is also eliminated in this approach. Values of iDLLR  near 0 are indicative 

of no treatment interaction for subject i .  

The Posterior Odds Ratio and Treatment Subset Prediction 

It may also be more intuitive to use the estimated or plug-in posterior OR: 

, 11 , 11
 

, 10 , 10

/ (1 ) ,
/ (1 )

post i post i
i post

post i post i

Pr Pr
OR

Pr Pr





where the estimated posterior probability  

1 1
, 1 1

0

ˆˆ ( | ) .
ˆˆ ( | )

t i t
post i t

gt i gt

g

f
Pr

f










z

z





 

Also single gene posterior odds ratios  ik postOR can also be used in the same way as the 

treatment ikOR in an ASD method. That is, tuning parameter R is used to select a cutoff for the 

 ik postOR , and parameter H selects the number of genes needed to exceed R in order for the 

subject to be predicted sensitive. Parametric methods using the above approaches are described 

below. 

Numeric Example for Single-Gene Posterior Odds Ratio 

Using the previous numeric example, 

2
11 11 11

2 2
01 01 01 11 11 11

ˆ ˆ ˆ( | , ) 0.9987 and 
ˆ ˆ ˆ ˆ ˆ ˆ( | , ) ( | , )

ik k k

ik k k ik k k

f z

f z f z

  

     



 

2
10 10 10

2 2
00 00 00 10 10 10

ˆ ˆ ˆ( | , ) 0.7362;
ˆ ˆ ˆ ˆ ˆ ˆ( | , ) ( | , )

ik k k

ik k k ik k k

f z

f z f z

  

     



 then  
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0.9987 / (1 0.9987) 89.6,
0.7362 / (1 0.7362)

ik postOR


 


 or log( ) 4.50.ikOR    

If ikOR  exceeds tuning parameter R  (obtained through nested CV), then the gene k  casts a 

vote in favor sensitivity for subject .i  

Linear Discriminant Analysis and Treatment Subset Prediction 

The compound distance measure derived in FDA measures how close a subject is to one class 

or the other. This approach also has the same classification rule as LDA when ML estimates are 

substituted for true values. For classification purposes, a cutpoint is usually determined based on 

CV and the subject is allocated based on this decision. However for treatment subset prediction, 

the difference in this distance across treatment arms can be evaluated. The equation becomes 

11 11 10 10

01 01 00 00

1 1exp exp
2 2log log ,
1 1exp exp
2 2

i i

i

i i

m m

DLLR

m m

 

 

   
    
    
   
    
   

 

where igtm  is the square of the Mahalanobis distance;  1
.( )' ( )i tigt gt gtim   μ Σ μz z for subject 

i  in the validation set, and using parameters for class ,g and treatment arm .t   This necessitates 

computation of m for each treatment arm as well as each class. A common within-class 

covariance matrix is assumed for a given treatment arm for LDA. However the covariance matrix 

might be expected to vary across the two treatment arms. In this case a different within-class 

pooled covariance matrix could be used across treatment arms ( .tΣ ), as shown in the equation 

above. As before, estimates usually need to be used in place of unknown true parameter values, 

and prior class probabilities and densities are estimated from the training data. Further 

improvements can often be obtained by using L2R versions for the covariance matrix such as 

those described in Ledoit & Wolfe (2004 [99]) and implemented in Xu et al. (2009 [177]), and 

L1R or L2R versions of LDA, which also have an impact on the covariance matrix. Extensions of 

the above method to DLDA, weighted voting, and posterior OR’s are straightforward.  
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For QDA and DQDA (Diagonal QDA), to account for the different covariance matrices 

between classes, the quantities
1exp
2 igtm

 
 
 

 in the above equation must be replaced with  

 
 

*/2
1

1/2

1 exp .
2 | |

1 ( )' ( )
2 gti gt i gtp

gt

   


 
 




μ Σ μ
Σ

z z  

QDA is more sensitive to departures from normality than LDA, and it is to be expected that 

instability of the covariance matrix will be even more of an issue with QDA than with LDA, since 

separate covariance matrices are estimated for each class. There are L2R versions of QDA and 

DQDA (Table 3)  that help address these issues. 

For treatment subset prediction in an application involving HTD, a separate DR step is  

needed before application of unpenalized versions of LDA or QDA. For guidance see Fan & Lv 

(2010 [16]). For the unpenalized versions of LDA, DR would need to reduce the number of 

selected feature to be less than treatment arm-specific sample sizes on training set. Specifically:

 , 1 , 0* min 2,  2 .D t D tp n n    Further reduction would be needed, as described earlier, to 

avoid instability of the covariance matrix. The remaining features are then used to predict a subset 

of sensitive patients. To select the tuning parameter to be used in the validation set for ,iDLLR  a 

nested CV approach can be used on the training set only.  

Linear Discriminant Analysis Regression and Treatment Subset Prediction 

As stated earlier, linear regression, with appropriately chosen cutoffs for two classes, is 

equivalent to LDA. However one advantage of using linear regression in place of LDA in an 

ASD setting is that treatment-gene interactions can be naturally incorporated into the regression 

model. For example, using an ASD approach similar to Freidlin & Simon: 

0( ) ,  where { 1,1}.k k i k i ikE g t t z g        In place of the treatment arm OR in the LCA  

approach to ASD, this equation has a treatment arm estimate ˆ ˆ .k k ikz   Again, for unequal class 

sizes, appropriate adjustments can easily be made to the outcome variable.  
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The equivalence of linear regression to LDA extends to multivariable regression as well. In 

that case treatment gene interaction terms and main effects would be needed for each (selected) 

gene. Furthermore, taking advantage of the relationship between LDA and regression, use of 

robust regression methods such as M-estimation (Venables & Ripley, 2002 [165]) and MAD 

could be explored in a treatment subset method. 

Use of Residuals and Treatment Subset Prediction 

With many regression methods it is more natural to use a continuous variable as the response. 

The  approach used in Rai et al., (2013 [129]) described in Section 4 can be extended to treatment 

subset prediction. The classification distance used in that method to classify a subject as diseased 

( 1)g  or disease free ( 0)g  is 0 1( )i ip p . A positive distance for subject i is more indicative 

of disease, and a negative distance is more indicative of a disease-free status. To extend this 

distance to treatment subset prediction, the models are built separately on both the training set 

treatment arm and the training set control arm. The 95% quantiles are also determined from these 

two arms. Then the difference in these distances between the two treatment arms is calculated:

01 11 00 10( ) ( ),i i i ip p p p    where igtp  is the average number of residuals exceeding a specified 

quantile under the model assuming g=g and t=t. In the differential scanning calorimetry setting, 

there is one equation for each subject ,i  so a tuning parameter similar to R can be used as a cut-

off to predict patient sensitivity to treatment, without additional need for tuning parameter .H   

6. Challenges and Future Directions 

It is known that no single classification method can be optimal for all situations (Wolpert, 

1997 [176]), so it is advantageous to have different methods for different data structures. In 

particular, the DR and classification method should be selected to be consistent with the goal of 

the study and with the distribution of the features. For example, if the goal is treatment subset 

prediction, then a DR method that selects features based only on treatment main effects is not 

optimal. If the data is highly skewed and a transformation such as those found in Box & Cox 
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(1964 [14]) or Parrish et al. (2009 [121]) cannot be found which results in features which are at 

least approximately normal, then both a DR and classification method are needed which are 

robust to departures from normality. For example the use of logistic regression for both DR and 

classification might be considered in this case (though LDA or DLDA may still perform well 

when the normality assumption is not severely violated). Table 8 provides some guidance 

regarding selection of DR and classification methods for difference scenarios and situations.  
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Table 8: Select parametric dimension reduction and classification methods – situation and 
conditions. 
Method Situation Condition 
Dimension 
Reduction   

PLS, PCA 

Used in presence of high multicollinearity/correlation 
between features such as in face recognition or 
chemometrics. PLS can also be used as a classification 
method. 

p*>nD, p*<nD 

SPLS or SPCA Same as above. p>> nD  

t test 

Used to screen for treatment main effect, but not treatment-
gene interactions; allows moderate deviation from normality 
(conditional on class) possibly after appropriate 
transformations; can allow for different variances between 
classes. 

p>> nD  

ANOVA 

Used to select features based on treatment-feature 
interactions, or to select features based on more than two 
groups/classes; assumes constant variance between 
groups/classes. 

p>> nD  

Univariable logistic 
regression 

Used to screen for main effects or treatment-feature 
interactions; no requirement that features follow a specific 
distribution. 

p>> nD 

L1R methods Best applied when only small subset of a large number of 
covariates/features is active. p*> nD, p>> nD 

L2R Methods 
Best used when there are a large subset of active 
covariates/features –can be used to identify gene-treatment 
interactions in presence of gene-gene interactions. 

p*> nD 

Classification   

FDA or linear 
regression 

Best performance when deviation from multivariate 
normality not severe for selected features; assumes common 
within class covariance matrix. 

Recommend      
p*< nD /5 

Multivariable LCA Robust to departures from distributional assumptions; often 
used as standard.  

Recommend  
p*< nD /5 

QDA 

Best performance when deviation from multivariate 
normality not severe for selected features; assumes different 
covariance matrices between classes. Not robust when 
assumptions are violated. 

Recommend  
p*< nD /5 

DLDA 

Assumes independence between features, but naïve Bayes 
methods can work well with some correlation; assumes 
constant variance between classes for each feature. Allows 
moderate deviation from normality 

p*< nD 

DQDA 

Assumes independence between features, but naïve Bayes 
methods can work well with some correlation; assumes 
different variance between classes for each feature. Allows 
moderate deviation from normality. 

p*< nD 

MLDA 
Best used when there are a large number of active features 
and non-diagonal elements of covariance matrix are not 
ignorable (naïve Bayes approach no longer optimal). 

p*> nD 

Weighted voting 
Single gene models “vote” to predict class; in class of naïve 
Bayes method; can tolerate some correlation between 
features (as high as 0.6 in Freidlin & Simon 2005 work). 

p*< nD 

p - total number of features; p* - number of selected features; nD sample size of training set; note - DR methods such as 

PLS, logistic regression, and L1R/L2R methods can also be used for classification.  
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There are many challenges remaining: 

1. How does one choose between different methods? There are established tests for normality, 

but some methods such as LDA may still perform well when this assumption is not severely 

violated. Also transformations may be used to make expression values less skewed and/or 

more approximately normally distributed. Are ensemble classifiers that incorporate several 

different classification methods an alternative approach? 

2. The assumption inherent in weighted voting is that some but not all selected features in a 

signature are overexpressed. When is this assumption appropriate? If not appropriate, 

simplification can be achieved by eliminating parameter H and calculating an average score 

over all selected features. Further, when are multivariable models preferred over single 

feature models? 

3. Further work needs to be done on evaluating methods which incorporate higher-order gene-

gene and gene-treatment interactions for treatment subset prediction.  

4. Several works cite the importance of biological pathways in treatment subset prediction. How 

can pathway analysis be incorporated more directly into treatment subset prediction. Do 

treatment interactions occur at the gene level or at the pathway level? How can treatment 

subset prediction be incorporated into studies which include different types of genomic 

information, such as miRNA’s, mRNA’s, and SNP’s. 

5. The purpose of the ASD methods described in this work is not to establish a set of predictive 

biomarkers but to predict sensitive patients. However the method will not work unless 

predictive genes are selected, so there is information that could be used. Nested CV on the 

training set can result in different genes being selected. At the same time, there is information 

that could be used to help move the process forward, such as the frequency of genes selected 

for each bootstrap or nested CV. Methods which mine ASD results to help establish 

predictive biomarkers would seem useful. 
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ESTIMATING DESIGN PARAMETERS IN THE PRESENCE OF GENE AND 

GENE -TREATMENT INTERACTION  

1. Introduction 

The effect or association of specific genes or genomic signatures on response rates to types of 

treatment are well documented. One example involves triple-negative breast cancer (TNBC), 

which is breast cancer in absence of staining for the estrogen receptor (ER) progesterone receptor 

(PR) and HER2 (Irvin & Carey, 2008 [87]). “Neoadjuvant chemotherapy studies have 

consistently reported higher response rates in TNBC than non-TNBC … The pCR [pathologic 

complete response] rate in the 23% of patients with TNBC was double that of the non-TNBC 

subset” (Isakoff , 2010 [88]).  

As well, treatments specific to melanoma and applicable to a subset of patients have more 

recently been coming onto market. For example, subsequent to the findings in Viros et al. (2008 

[166]), a treatment Vemurafenib, for a subset of patients having melanoma with BRAF V600e 

mutations (Chapman et al., 2011 [24]) was approved by the FDA. In the year prior, Ipilimumab 

was approved by the FDA for treatment of metastatic melanoma (Hodi et al., 2010 [79]). Saenger 

& Wochok (2009 [139]) had previously shown that heterogeneity is present in patient response to 

Ipilimumab. Methods are being developed for clinical studies which use genomic information to 

find a subset of patients which respond differently to treatment. The Adaptive Signature Design 

(ASD) in Freidlin & Simon (2005 [54]) is used to find a subset of patients responding differently 

to treatment in phase III clinical studies in cases where a genomic signature has not yet been 

developed. 
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Purpose of Study 

The ASD model consists of two tests- one to assess overall treatment effect, and another to 

evaluate  treatment effect restricted to a subset of patients prospectively predicted  to be sensitive 

to treatment. Type 1 error controlled by allocating it between these two tests. In this work a 

method is given for calculating sample size of training set to attain a given power for the subset 

test. This method takes into account gene overlap between classes. 

Organization of Study 

Section 2 covers notation and definitions. Section 3 outlines background for the adaptive 

signature design. Section 4 describes an adaptive signature design similar to Freidlin and Simon. 

Power for the Adaptive Signature Design is in Section 5, and limitations are in Section 6. 

2. Notation and Definitions 

The sample sizes of subjects for Stage 1 and Stage 2 are n1 and n2 respectively; the total 

sample size is 1 2.n n n   Stage 1 serves as the training set where the prediction model is built 

(using nested cross validation), and Stage 2 serve as the final validation set where patient 

sensitivity is predicted. 

A subject that is sensitive to treatment has a greater probability of response on the treatment 

arm than on the control arm. Response-to-treatment status is denoted by random variable ,Y  

which takes on values 0 for no response, and 1 for response to treatment. The probability that any 

new subject accrued into the study is sensitive is ,Sp  and  
STRp  is the probability of response 

given iS s  and ,iT t  where {0,1}S  and {0,1}T   are random variables for patient 

sensitivity status and patient treatment arm status respectively. The number of evaluated genes is 

p. Within these p genes it is assumed that there is a set of predictive genes which can be used to 

predict sensitivity status of subjects. Without loss of generality, it is assumed that the first m 

genes, 1,..., ,k m are the predictive genes. The p-length vector of gene expression for subject i 
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is denoted by random variable iZ , and the kth element of that vector (gene expression for the kth 

gene for subject i) is .ikZ  Fixed realization of these quantities are denoted by lower case letters. 

3. Background for the Adaptive Signature Design 

1) Gene expression profile of predictive genes 1,...,k m  follows a multivariate normal 

distribution which depends on sensitivity status of subject. The distribution of predictive 

genes is multivariate normally distributed with mean vector 1μ  and covariance matrix 1Σ  for 

sensitive patients, and mean vector 0μ  and covariance matrix 0Σ for nonsensitive patients. 

a. The sample size planning method proposed constrains these two covariance matrices 

to be equal. 

2) The distribution of nonpredictive genes 1,...,k m p   also follows a multivariate normal 

distribution, but the means do not depend on sensitivity status- the distribution is the same for 

all subjects. 

3) The distribution of predictive genes is independent of treatment assignment; the results of the 

assay are not used to assign subjects to a specific treatment arm:

Pr( , ) Pr( )Pr( ),  , 1,..., ; 1,..., .ik i ik iZ T Z T i i n k m      

4) The distribution of expression of predictive genes for sensitive patients is not independent of 

response: Pr( , ) Pr( )Pr( );  s.t. 1, 1,..., .ik i ik i iZ Y Z Y i s k m     

5) The distribution of expression of predictive genes for nonsensitive patients is independent of 

response: Pr( , ) Pr( )Pr( );  s.t. s 0, 1,..., ;ik i ik i iZ Y Z Y i k m     

6) For the non-predictive genes, expression is independent of response; i.e.: 

Pr( , ) Pr( )Pr( ); 1,..., ;  1,..., .ik i ik iZ Y Z Y i n k m p     

7) The nonpredictive genes are constrained to have the same mean regardless of sensitivity 

status of a subject. In the ASD model proposed by Freidlin & Simon, they have the same 
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mean as the predictive genes for non-sensitive subjects, but have different variance which is 

denoted here by 2
ns  : i.e.: 

2
0~ ( , ), , 1,..., . ik nsZ N k k m p      

8) There may also be positive correlation among predictive genes, and correlation among 

nonpredictive genes.  

4. An Adaptive Signature Design Model Similar to Freidlin and Simon 

In the ASD model, parameters are estimated over gene expression for both sensitive and non-

sensitive subjects. The purpose is to predict patient sensitivity, so patient sensitivity cannot be 

treated as known in the model. Therefore the model parameters must be estimated on the training 

set without regard to subject sensitivity status. However gene expression ikz  is known, and for 

predictive genes 1,..., ,k m ikz is conditional on the unknown value of .is  The model relating 

expected value of gene expression for predictive genes ( ), 1,...,ikE Z k m , patient sensitivity 

status and treatment arm status to response probability 
iRp  can be written: 
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  
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

Z

                (4.1) 

Now, if expected value of expression for predictive gene depends only on sensitivity status of 

subject, (i.e.- ( | )ik i skE Z S s   ) then subscript i can be dropped since probability of response 

no longer depends on i, and for a sensitive subject on the treatment arm: 

 11 0 1 2 1 12 1
1

logit( ) logit( | 1, 1) .
m

R R j k k k

k

p p S T      


                           (4.2a)  

For non-sensitive subjects on the treatment arm: 

01 0 1 2 0 12 0
1

logit( ) logit( | 0, 1) ( ).
m

R R k k k k

k

p p S T      


                          (4.2b) 
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For a sensitive subject on the control arm: 

10 0 2 1
1

logit( ) logit( | 1, 0) .
m

R R k k

k

p p S T   


                                                   (4.2c) 

For a nonsensitive subject on the control arm: 

00 0 2 0
1

logit( ) logit( | 0, 0) .
m

R R k k

k

p p S T   


                                                (4.2d) 

where 1  is coefficient for the treatment main effect over all the subjects, 2k is the coefficient 

for gene expression main effect for the kth predictive gene, and 12k is the treatment-expression 

interaction effect for the kth predictive gene.  

4.1 Predictive Value of Mean Expression 

Note that this model assumes that it is the expected or mean value of predictive gene 

expression for a subject that is predictive of probability of response, but not the variation around 

the mean. The reasoning behind this is that short term variation in gene expression around the 

mean can be due to technical variation and short term (e.g. day to day) biological variation, such 

as variation due to instability in mRNA. These would not be expected to influence .Rp  (Over 

time, mean expression may change, and this change may influence probability of response. This 

situation is not considered in this work). However, even though in this model the assumption is 

that it is the mean of expression values which are predictive, these values are not known in 

practice, so the gene expressions ikz  are used in their place for prediction purposes. Sensitivity 

status for a subject is also not known. The purpose of ASD is to predict sensitivity status. The 

ASD model, using maximum likelihood estimates from the training set substituted for true 

unknown parameter values, using selected genes in place of the true unknown predictive genes, 

is: 

 
*

* 0 1 2 * 12 *
* 1

ˆ ˆ ˆ ˆˆ ˆlogit( ) logit( | , ) ,
ti

m

R R i ik i k ik i k ik

k

p p t z t z t z   


         



80 
 

where  * 1,..., *k m  are the m* genes predicted to be sensitive (using the DR step), and where 

information to predict is  must be derived from the *ikz expression values in place of the sk , as 

well as the estimated model coefficients, and their relationship with ti. The following observations 

are made: 

1) High overlap is obviously desired between the m* genes predicted to be sensitive, and the m 

genes that are actually predictive. If there is no overlap, then the classification accuracy will 

be no greater than that expected due to chance alone. 

2) Subscript s is not used in estimated logit ˆ .
tiRp  Even though expected values of gene 

expressions for predictive genes are dependent on sensitivity status, gene expression values 

are used regardless of sensitivity status, since sensitivity status is being predicted and is 

unknown. 

3) The assumption that probability of response is dependent only on treatment arm and 

sensitivity status and not on subject is made for purposes of generalization for sample size 

and power analysis. For example in the Dobbin & Simon work (2007 [36]), sample size 

calculations for probability of correct classification 1( ( ))PCC n  are based on a common 

effect size for all predictive genes. The effect size is the difference between means of gene 

expression for predictive genes for sensitive patients and means of gene expression for 

nonsensitive patients, divided by the standard deviation. For purposes of sample size 

calculation, Dobbin and Simon argue that the variance estimate used to calculate effect size 

can be based on the 90 percentile of gene variances. 

4) Even though the true logit does not depend on i, the estimated logit does depend on i, since 

the realized gene expression values must be used in place of true expression means. In order 

to predict sensitivity for subject i in the validation set one could use the treatment arm odds 

ratio, as is done in F&S. Subject i has not necessarily been assigned to a treatment arm, but 
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the treatment arm odds ratio is a measure of the difference in probability of response over the 

two treatment arms, which in turn is a measure of sensitivity of the subject to treatment. 

* *1 0
*

*

1 12
1

ˆ ˆˆ ˆexp logit( ) logit( ) exp .
i i

m

i R R k ik
k

OR p p z 


 
      

 
  

Simulations by the authors have also shown that single gene posterior odds ratios based on, 

for example posterior odds ratios from parametric or nonparametric densities (Cambon, 

Baumgartner, Brock, Cooper, & Rai 2015 [20]), hold up reasonably well to single gene logistic 

models, even when model assumptions for LDA are violated. 

4.2 Probability of Response 

Now probability of response conditional on treatment arm and sensitivity status can be 

expressed as: ( | , ) ( )
stst RE Y S s T t E Y p   

 
 

exp logit( )
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p



                     (4.3) 

For example, for sensitive patients on the treatment arm, the probability of response is: 
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and similarly for 10(Y )E  and 00(Y ),E  and where equations for logit( )
stRp are given in 

equations 4.2a-4.2d.  

The probability of response on the treatment arm over both sensitive and insensitive subjects 

is then: 

01 11
( | 1) (1 ) ,

ER S R S RE Y T p p p p p      

where Sp  is the probability that any patient is sensitive to treatment. 

The expected probability of response over all subjects on the control arm is then: 

00 10
( | 0) (1 ) ( ).

CR S R S RE Y T p p p p p      

The marginal probability of response over both treatment arms is: 
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If subjects are randomly assigned to either treatment arm with probability 0.5, then 

00 01 10 11
0.5 (1 )( ) ( ) ( ) / 2.

E CR S R R S R R R Rp p p p p p p p p          

5. Power for the Adaptive Signature Design 

5.1 Power for the Overall Treatment Effect 

For a study with n patients, the power of a two-sided  -level test to detect a difference in 

response between two treatment arms with equal sample size is approximately: 

Power = 
1

1/2

1

1/2

4( ) (1 )
1
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                                      (5.1)     

(Freidlin & Simon, 2005 [54]) where   is the type II error, ( )   is the cumulative 

distribution function for the standard normal distribution,
ERp and 

CRp  are probability of response 

in enhanced and standard treatment arms respectively, 1  is the portion of the Type 1 error 

allocated to the overall test, 1z  is the (1 )  percentile of the standard normal distribution, and  

.
2

E CR Rp p
p


  For equal probability of treatment assignment 0.5 to each group, .Rp p  The 

formula is valid for 1 5.n p   Power calculations based on the continuity corrected arcsine 

transformation (Dobson & Gebski, 1986 [37]) can offer  more accurate power estimations 

especially for small sample sizes and for proportions close to 0. 

5.2 Power for Treatment Effect in Predicted Subset of Patients 

Let  sensp  and specp  denote the sensitivity and specificity of the sensitivity status prediction 

method. The purpose of ASD is to predict sensitivity status for stage 2 patients, using a model 
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built on the training set (stage 1 patients), and gene expression from the stage 2 patients reserved 

for prediction. The probability that a selected patient is sensitive (the positive predictive value 

PPV) is  

( )( )
( )( ) (1 )(1 )

S sens

S sens S spec

p p
PPV

p p p p


  
 .                                                                       (5.2) 

The expected probability of response for a subject on the treatment arm in the selected subset 

is 
11 01

( ) (1 )( );
ER R Rp PPV p PPV p


    for a subject on the control arm the expected 

probability of response is 
10 00

( ) (1 )( );
CR R Rp PPV p PPV p


   if there is no gene main effect, 

then 
10 00R Rp p , and .C Cp p   In either case, the expected sample size of the predicted subset 

of patients in stage 2 is  

2 2 (1 )(1 ) ,s sens s specn n p p p p
        

and the power of the subset comparison using Stage 2 patients predicted to be sensitive to 

treatment is (Freidlin & Simon, 2005 [54]):  
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1
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1 .
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n n




 

   

  





 

  
    

     
  

    
  

                                          (5.3) 

where 2  is the portion of the Type I error allocated to the test for the predicted subset. Note that 

while  equation 5.1 is for all subjects in the study, the power for subset prediction (5.3) is for the 

subset of the stage 2 patients predicted to be sensitive to treatment. However it is a function of the 

sample size of the training set through sensp  and specp , which are used to calculate PPV, which in 

turn is used to calculate 
ERp


and 

CRp


 in equation 5.3. Also note that this equation does not take 

into account how much the power of the subset test increases the power of the ASD method over 
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the power for the overall treatment effect alone. In the ASD method, significance is declared if 

there is either a significant overall effect or a significant subset effect. 

5.2.1 Sensitivity and Specificity of Prediction Method  

Power of the subset comparison is a function of the sensitivity sensp and specificity ,specp of 

the prediction method as well as Sp , the probability of a patient being sensitive to treatment, and 

2 ,n  the sample size for Stage 2. As sensp  and specp increase, PPV and
ERp


also increase, thus 

increasing effect size in the subset. Sensitivity and specificity of the ASD method are in turn a 

function of the sample size for stage 1 ( 1n  ), the magnitude of the difference in differential 

expression between treatment arms for predictive genes (for the DR step), and the amount of 

overlap in multivariate distributions of gene expression profile of selected genes between 

sensitive and nonsensitive subjects. To the extent there is overlapping space between the 

sensitivity-status specific multivariate distributions of the predictive genes, then no matter how 

large the sample size 1n , the predictor will not be able to achieve perfect classification accuracy, 

and sensp and specp  will not approach 1 even as 1n  becomes very large. 

5.2.2 Sample Size Planning for the Simple Two-Class Problem in a High-Dimensional 

Setting 

For the two-class problem, Dobbin & Simon (2007 [36]) outline a method to calculate 

PCC(n1) (probability of correct classification given a training set sample size of n1) in a high 

dimensional setting, taking into account distribution of  gene expression for the two classes. It is 

assumed a small proportion of genes m/p is predictive of class status. If PCC(n1)  is calculated for 

each class, then this gives estimates for  sensitivity and specificity for the classification method. If 

a way can be found to apply or adapt this method to the ASD setting, then sensp  and specp could 

be calculated as a function of 1n  and used to derive quantities in (5.3) to estimate power for the 
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subset of patients in Stage 2 predicted to be sensitive to treatment. Their method (referred to as 

D&S) takes into account variation in both the DR and the classification step.  

Now the normal approximation sample size formula, applied to the training set, (and 

assuming gene expression for one differentially expressed gene) is: 

1 1

2
2

1 2,1 /2 2,124 ( ) ,
(2 ) n nn t t 




                                                                                           (5.4) 

where 2  is the difference between class means, 2  is the within-class variance, 1  is the 

specificity associated with correctly identifying a gene that is not differentially expressed, 

1 2,1 /2nt   is the quantile function of the central t-distribution with 1 2n   degrees of freedom at 

probability 1 / 2  – i.e.  
1

1
2,1 /2 2(1 / 2)n nt T 

    , where 1
2 ( )nT 

  is the inverse cumulative 

distribution function for a central t-distribution with 2n  degrees of freedom. 

Dobbin & Simon (2007 [36]) derived the following approximate formula for the power  for 

equation (5.4): 

1 12 1 2,1 /21 ,n nT n t 





  

 
   

 
                                                                                        (5.5a) 

where 2 ( )nT    is the cumulative distribution function for a central t-distribution with  2n

degrees of freedom. The formula derived by Chow, Shao, & Wang (2002 [26]) takes into account 

the fact that power is under the alternative hypothesis and therefore uses the cumulative 

distribution function for the noncentral t-distribution: 

1 01 112 2,1 /2

01 11

21 1 ,
1 1

|n n nT t

n n








   

 
 
   
 

  
 

                                                                   (5.5b) 

where
01 11 2,1 /2n nt    is the quantile function for a central t-distribution with degrees of freedom 

01 11n n (where 01 11 and n n are class-specific sample sizes on the training set - 01 11 1n n n  ), 
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and evaluated at quantile 1 / 2,  and 2 ( | )nT   is the cumulative distribution function of the 

noncentral t-distribution with 1 2n  degrees of freedom and noncentrality parameter .  

Now (5.5a) and (5.5b) are expressions for power to detect a difference between two groups 

using one differentially expressed gene. Dobbin & Simon also derived an expression for a linear 

classifier with m differentially expressed genes with equal effect sizes 2 /   and p m  

nondifferentially expressed genes (details in Appendix and in D&S). When prior class 

probabilities are equal, 

1
1

(1 )( ) ,
(1 ) ( )

m
PCC n

m p m

 

   

 
  

    

                                                            (5.6a) 

where 1   is sensitivity or power for correctly selecting any differentially expressed gene, 1  

is the largest eigenvalue of the correlation matrix of the genes (see Schott, 2005 [146] ), and 

1  is specificity for correctly identifying a non-differentially expressed gene. Each 

differentially expressed gene has difference in class means 2 ,  and both predictive and 

nonpredictive genes have within-class standard deviation .   

This lower bound for 1( )PCC n  in 5.6a takes correlation between genes into account, using 

properties of extremal eigenvalues (Schott, 2005 [146] ). However in simulations and applications 

involving real data sets in D&S, it was found that this approach tended to be overly conservative, 

and that an equation for PCC(n1) assuming gene expression independence was either accurate 

(accurately estimated the required sample size) or conservative (the sample size was higher than 

required). The equation assuming gene expression independence takes advantage of the fact that 

under that assumption, 1 1  . The equation then becomes: 

1
(1 )( ) ,

(1 ) ( )
m

PCC n
m p m

 

  

 
      

                                                                    (5.6b) 
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Now in many settings (including the ASD setting), the populations of sensitive and 

nonsensitive patients are unlikely to be equal. In this case, if equation 5.6a is applied to class 

prediction, the equation becomes: 

1
1

1

(1 )( )
(1 ) ( )

(1 )(1 )
(1 ) ( )

S

S

m k
PCC n p

m p m

m k
p

m p m

 

   

 

   

  
  

    

  
   

    

                                                        (5.6c) 

where 
11 log .

2
S

S

p
k

p


  As before, if gene independence is assumed, then 1 1   and the two 

sides of the equation are approximately equal. Dobbin and Simon also showed how to modify 

5.6a to control PCC in each class (particularly the smaller class, which will have a lower PCC). 

This formula for a linear classifier is conservative and does not assume Bayes rule, but under 

this approach, as 1n  becomes large, 1( )PCC n does approach ( ),PCC  the probability of correct 

classification assuming the Bayes rule is the normal classifier and assuming independence 

between genes. 

Then D&S used (5.5a) to eliminate 1   in (5.6a). The equation for the simple two-class 

problem (which is not equivalent to the ASD setting), assuming equal prior class probabilities and 

based on the normal approximation sample size formula and assuming gene independence is then: 

1 1

1 1

2 1 2,1 /2

1 1/2

2 1 2,1 /2

( , ) ,
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n n
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




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




  

  

  
  

   
 
        

   

                                    (5.7) 

where 1( , )PCC n  is the probability of correct classification given sample size n1 and given .  

For unequal prior class probabilities, 5.5a could be substituted into 5.6c instead. Note that 

equation 5.5b could also be substituted into equation 5.6a or 5.6c in which case the cumulative 

distribution function for the noncentral t-distribution is used. For a given 1n , (5.7) can be used to 
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find an optimal   for gene selection that will maximize 1( ).PCC n  It can also by extension be 

used to estimate PCC for different 1n .  

Now the value of the quantile function for the t-distribution (
1 2,1 /2nt   ) included in (5.5a) and 

(5.5b) is directly related to a DR method often used in the two-class setting. This DR method is 

based on class-specific parameters only and is, for each gene k: 

1k 0
2

1 0

ˆ ˆ( ) ,  1,..., ,
ˆ (1/ 1/ )

g

k
Dk

k

t k p
n n

 




 


                                                                            (5.8) 

where 2ˆ
gk is the variance pooled over response status group for gene k on the training set, ˆ

gk  

are class -specific means for gene k on the training set, and gn  , {0,1},g  is the sample size of 

subjects specific to class g on the training set; i.e. - 0 1 .Dn n n   In this DR method, Dkt is used to 

evaluate gene k based on a t-statistic with 1 2n   degrees of freedom. If the absolute value of the 

t-statistics for gene k exceeds 
1 2,1 /2nt   , then the gene is selected. Next note that the cumulative 

distribution function in (5.5), which is used to approximate sensitivity for gene selection, 

decreases with increasing 
1 2,1 /2nt   , and increases with increasing values of 

1n



 with held 

constant. In fact, if effect size and n1 are sufficiently large, so that   can be kept very small to 

minimize the quantity ( )p m   in the denominator (also assuming p-m is not too large), then 

1( , )PCC n   will approach 
1/2m 



 
 
 

, which is the probability of correct classification 

assuming the Bayes rule is known and that it is the normal classifier, and assuming gene 

independence.  

Note that (5.5a) and (5.5b) are expressions for power or sensitivity of gene selection, and 

therefore the equations are a function of the DR step. From the same equation it can be seen that 

the sensitivity of the DR step is a function of effect size and sample size n1. Reducing   reduces 
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the sensitivity but increases specificity 1 .   Note that the DR step can take advantage of 

increasing values of 1n  so that, with 1n  large enough, high sensitivity (and specificity) for gene 

selection can be obtained even with smaller values of .


 However, even if the DR step perfectly 

separates out the predictive genes, the probability of correct classification will be limited by the 

effect size 
2


, which is independent of n1. Subjects are classified one at a time, not as a group. 

No matter how large 1n , the sample size for each subject i in the validation set is still 1, and 

classification decisions are based on the iz  vector for the subject and the difference in 

sensitivity-status specific distributions of the different iz  . 

5.2.3 Dimension Reduction and the Adaptive Signature Design 

The two main differences between settings for ASD and D&S are related to distributions for 

sensitivity status for ASD, and difference in probability of response of sensitive patients between 

treatment arms. In the ASD setting, expression distribution of predictive genes depends on 

sensitivity status of patient, which is unknown, but is being predicted. Sensitivity status is 

measured by the extent to which probability of response for a patient is greater in the treatment 

arm than in the control arm. The DR step can be motivated by the fact that, assuming there are 

sensitive patients enrolled in the study, then expression for predictive genes should have a greater 

difference in response status-specific distributions in the treatment arm than in the control arm, 

whereas nonpredictive genes should show little or no difference. The DR method used in 

simulations in Freidlin, Jiang, & Simon (2010 [36]) compares differential expression between 

responders and non-responders in the treatment group to differential expression in the control 

group. The equation is: 

11k 01 10 00
2

11 01 10 00

ˆ ˆ ˆ ˆ( ) ( ) ,  1,..., ,
ˆ (1/ 1/ 1/ 1/ )D

gt

k k k
D k

k

t k p
n n n n

   



  
 

  
                                             (5.9) 
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where 2ˆ
gtk is the variance pooled over each combination of treatment-specific and response 

status-specific groups for gene k on the training set, ˆ
gtk  are class and treatment arm-specific 

means for gene k on the training set ( {0,1}, {0,1}),g t    and gtn  is the sample size of subjects 

specific to class g and treatment arm t on the training set; i.e. - 00 01 10 11 1.n n n n n     Note 

that in a DR step for gene selection 
DD kt can be evaluated as a t-statistic with 1 4n   degrees of 

freedom, assuming distributions of means are approximately normally distributed. The selection 

criteria could be based on the absolute value of the t-statistic: if 
1 4,1 */2| |

DD k nt t   , then gene k is 

selected.  

The expression for power assuming one gene with a difference in differential expression 

between the two treatment arms can be derived as follows: 

11 01 10 00

11k 01 10 00
1 /2, 42

11 01 10 00

ˆ ˆ ˆ ˆ( ) ( )
ˆ (1/ 1/ 1/ 1/ )

gt

k k k
n n n n
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t
n n n n



   


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  


  
 

Under the alternative hypothesis that 0,   after ignoring a small term of value / 2 , it 

follows that: 

01 11 10 00 01 11 10 00

*

4 4,1 /2
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01 11 10 00

21 1 ,
1 1 1 1

|n n n n n n n nT t

n n n n


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 
 
   
 

    
 

                  (5.10) 

where here *
11k 01 10 002 ( ) ( )k k k         is the mean difference in differential expression 

between the treatment and control arms, *2  is the variance pooled over response status and 

treatment arm, the gtn  are the class and treatment arm-specific sample sizes on the training set, 

01 11 10 00 4,1 /2n n n nt       is the quantile function for the central t-distribution with degrees of freedom  

01 11 10 00 4n n n n    , and  
01 11 10 00 4( | )n n n nT      is the cumulative distribution function of the 
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noncentral t-distribution with 01 11 10 00 4n n n n    degrees of freedom and noncentrality 

parameter .   

Now in order to calculate *2  and *2  we need expectation of (predictive) gene expression 

given sensitivity status (Z | S ),E s  the proportion of sensitive patients ,Sp  the proportion of 

sensitive patients on each treatment arm who respond 
1|S T tRp
 

 and the proportion of nonsensitive 

patients who respond
0|S T tRp

 
. The equations for response status and treatment arm specific gene 

expression means ( gt ) for predictive genes, are: 
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1, 1 0, 1 1, 1 0, 1
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The variances for response status and treatment arm specific gene expression 2( )gt  , for 

predictive genes, are: 
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Now note that a pooled standard deviation for *  assumes that variances in each of the four 

groups are equal. However based on equations 5.12a through 5.12d, the variances cannot be 

expected to be equal. Sample size calculations for unequal variances using the noncentral t-

distribution have been presented in Harrison and Brady (2004 [72]). These use adjustments for 

degrees of freedom based on Satterthwaite (1946 [142]) or Welch (1947 [172]). These methods 

can also be used to modify degrees of freedom   for the t-statistic (
01 11 10 00 4,1 /2n n n nt      ) in 5.10 
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to account for the unequal variances. For example based on Satterthwaite’s formula (1941 [143])

 

       

22 2 2 2
11 11 01 01 10 10 00 00

2 2 2 22 2 2 2
11 11 10 10 01 01 00 00

11 10 01 00

/ / / /
.

/ / / /
1 1 1 1

n n n n

n n n n

n n n n

   


   

  


  
   

  

The formula for power (or sensitivity to correctly identify any gene with a significant 

difference in differential expression between the two arms) in 5.10 is then modified for unequal 

variances as follows: 

*

,1 /2 2 2 22
01 10 0011

01 11 10 00

21 1 .|T t

n n n n

  




  


 
 
 

  
 
   
 
 

                                                         (5.13) 

Again, for each treatment group, these are calculated from the proportion of sensitive 

patients, the proportion of sensitive subjects expected to respond and the proportion of 

nonsensitive subjects expected to respond. The expected sample sizes gtn  given a training set of 

size n1 and equal allocation of subjects to the two treatment arms are: 

1, 1 0, 111 10.5 { (1 ) }
S T S TS R S Rn n p p p p
   

      

1, 1 0, 101 10.5 { (1 ) (1 )(1 )}
S T S TS R S Rn n p p p p
   

      

1, 0 0, 010 10.5 { (1 ) }
S T S TS R S Rn n p p p p
   

    

0 1, 0 0, 000 10.5 { (1 ) (1 )(1 )}
T S TS R S Rn n p p p p

   
      

Note that, on the control arm, if there is no difference in probability of response between 

sensitive and nonsensitive patients, then 
0 1, 0 0, 0

,
T S T S TR R Rp p p
    
   and 

010 10.5
TRn p n


  and 
000 10.5(1 ) .

TRn p n


   There will also be simplifications for equations for 

2
gt  and .gt   
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5.2.4 Probability of Correct Classification and the Adaptive Signature Design 

The previous section has shown how to modify 1( )PCC n  to take into account the DR step in 

the ASD setting (equation 5.13) as opposed to the simple two-class problem. Now, the extent that 

the DR step correctly selects genes with a difference in differential expression between the two 

arms, the simple linear classifier proposed by D&S and applied to the ASD setting is left with the 

selected genes from the vector 
iz  to make a classification decision for sensitivity status for each 

subject. Remember that 2 /   has been previously defined as the effect size for predictive 

genes, between sensitive and nonsensitive subjects.  

Using this approach, assuming equal class sizes and gene independence, equation 5.6b can be 

modified as follows: 

 

*

,1 /2 2 2 22
01 10 0011

01 11 10 00
1

*

,1 /2 2 2 22
01 10 0011

01 11 10 00

21

( )

21 ( )

|
|

m T t

n n n n
PCC n

m T t p m

n n n n

  

  

 

   




  





   
   
   

   
        

    
   
   
   

     
            

,                (5.14) 

 

If class sizes are not equal, as is likely for sensitivity status in the ASD setting, the method by 

D&S to adapt this equation to control PCC in the rarer class can be used. Alternatively we can 

modify equation 5.6c as follows (again setting 1   for gene independence): 
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
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


 

6. Limitations and Future Work 

There are some differences between the classification of sensitivity status in an ASD setting 

and classification in the simple two-class problem outlined in D&S. For example, sensitivity 

status does not become known on the training set. Instead a CV method is used which chooses a 

set of tuning parameters which optimize sensitivity status prediction. Simulations need to be 

performed to evaluate what effect this has on sample size and power estimation. Also the use of 

the Student’s t-distribution assumes that the sample means ˆ
gt  are at least approximately 

normally distributed. This assumption is likely to break down with small sample sizes ,gtn  

because of the mixture of normal distributions. A nonparametric approach  based on ranks along 

the lines of those described in Conover and Iman (1981 [29]) or power and sample size methods 
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for logistic regression methods on Shieh (2000 [149]) and Self, Mauritsen, & Ohara (1992 [148]) 

may be avenues for exploration.  

Still another approach may be to use an Expectation Maximization (EM) algorithm 

(Dempster, Laird, & Rubin, 1977 [34]) to attempt to retrieve the distributions based on sensitivity 

status, which is a latent variable. An EM approach for Gaussian mixtures involving latent 

variables is outlined in Bishop (2006 [10]). A Bayesian method is also outlined which addresses 

“significant limitations in the maximum likelihood approach”. If an EM or Bayesian method were 

to be adopted, the challenge would still remain of incorporating a power and sample size method 

for the approach.  

Finally, another limitation is that the method described in this work assumes equal within-

class covariance matrices for each class. The works of Freidlin & Simon assume unequal 

covariance matrices for each sensitivity status class.  

Appendix 

Linear Classifier for PCC(n) 

Linear classifier with weights 1 for genes that are selected and 0 for those that are not, 

assuming centering of gene expression class means around 0, and assuming equal prior 

probabilities: i.e. the linear classifier makes the following classification decision: 

 ˆ 0i ig I w'z . Here w is a vector of weights of 0’s and 1’s. This is consistent with a DR step 

for gene selection. In the case of unequal prior probabilities, the equation is 

1

1

11ˆ log .
2i ig I





 
  

 
w'z  

The equation for probability of correct classification for this linear classifier assumes m 

differentially expressed genes, all with same effect size 2 /  , as well as p m  

nondifferentially expressed genes. More details can be found in Dobbin & Simon (2007) 
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Note on Equation for Probability of Correct Classification 

A method is outlined in D&S for deriving ( )PCC  , which is the probability of correct 

classification given that the Bayes rule is known and that it is the normal classifier (Linear 

Discriminant Analysis or LDA). The equation for ( )PCC   can be derived from LDA by setting 

elements of the 1μ  and 0μ vectors of expected gene expression means to 1 and -1 respectively for 

predictive genes and sensitive , and both to 0 for nonpredictive genes. The pooled correlation  

matrix 1 0Σ Σ  can be diagonal for both predictive and nonpredictive genes. Correlation between 

genes can also be taken into account. In this setting, it can be shown that the normal classifier is 

itself normally distributed since it is a linear combination of the elements of the multivariate 

normally distributed vector iz vector times a constant. This is important because the classifier is 

essentially a test statistic that makes classification decisions at the unit level - for each subject i. 

Therefore asymptotic normality cannot be invoked, as is often done for test statistics when testing 

for difference between two groups. However one limitation of using this method in the ASD 

context is that although gene expression is assumed to be multivariate normally distributed, the 

relationship with expected value of gene expressions and response is assumed to follow a logistic 

model. So we can expect ( )PCC  assuming LDA is the Bayes rule to be optimistic if the logistic 

model is the true model, since LDA has superior performance to logistic regression when 

assumptions for LDA are true. However what we are really after is 1( )PCC n , which is the 

probability of correct classification given the sample size on the training set. The expression for 

1( )PCC n derived in Dobbin & Simon (2007 [36]) does not assume LDA, and the sample sizes 

given are shown to be conservative in many cases.  

Bayes rule assuming the normal classifier 

It is assumed that, at least after log normalization, gene expression between classes is 

multivariate normally distributed, and that variance (or covariance matrix) for the classes are the 



98 
 

same. In addition it is assumed that gene expression is log normalized and standardized in such a 

way that the mean vector for the two difference classes is centered around 0. The reason for this 

is that, for linear discriminant analysis, quadratic terms drop out and, if gene expression vector 
iz  

is multivariate normally distributed, then the classifier itself is normally distributed since it is a 

linear combination of the multivariate normally distributed variable iz . Specifically 

       
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And if the class mean vectors are centered around 0, this becomes 

    0
11 1

0 0

log ' log .i i iLLR
 

 

   
       

   
1μ μ Σ a'z z  The classifier itself is then 

normally distributed: if 1 1μ  and 0 1 μ  then  

   1 11 1

0 1

1log ' ,  or log ' .i i iLLR
 

 
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PROPERTIES OF ADAPTIVE CLINICAL TRIAL SIGNATURE DESIGN IN 

THE PRESENCE OF GENE AND GENE –TREATMENT INTERACTION 

Abstract 

In this work properties of the adaptive signature design are investigated through simulation. 

The scenarios include presence of gene expression-treatment interaction effect only, presence of 

both gene expression main effect and expression-treatment interaction, and presence of 

expression, treatment, and expression-treatment interaction. Classification methods are examined 

which both include and exclude gene expression main effect. It was found that, under the 

scenarios considered, the models which exclude expression main effect while including treatment 

main effect and expression-treatment interaction often had superior performance to models which 

included expression main effect. 

Key Words: classification; machine learning; dimension reduction; interaction; melanoma; 

clinical study. 
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1. Introduction 

Freidlin & Simon (2005 [54]) introduced the adaptive signature design (ASD) to predict a 

subset of patients more sensitive to treatment. A flowchart of this method is shown in Figure 1. 

The first stage of the two-stage design is used to develop a predictive model prospectively. When 

the predictive model is built, response and gene expression data is available for Stage 1 patients. 

Response information becomes available after predictions are made. The classification rule is 

then applied to the Stage 2 patients to predictive a subset of patients more sensitive to treatment. 

Gene expression for Stage 2 patients is available for prediction purposes, but outcome results are 

not yet available (or if they are they are not used). 

When results for both Stage 1 and Stage 2 are available, an overall treatment-control 

comparison test is conducted over all the patients. In addition a treatment-control comparison is 

conducted on Stage 2 only. The treatment is considered significant if either test is significant. 

Type 1 error is controlled by constraining the sum of the two alpha levels for these two tests. 

Freidlin, Jiang, & Simon (2010 [55]) extend this approach using cross validation to apply the 

prediction model over all the patients (both Stage 1 and Stage 2). Many classification methods 

can be employed in this approach. The specific example used in the Freidlin & Simon work was a 

weighted voting single-gene logistic regression model with treatment main effect and gene 

expression-treatment interaction. The simulations included scenarios in which the probability of 

response for sensitive subjects was the same as that for nonsensitive subjects except in the 

treatment arm. This equates to scenarios involving only treatment- expression interaction, but no 

main effects for expression or treatment.  

Purpose of Study 

In Cambon, Baumgartner, Brock, Cooper, & Rai (2015a [19]) and  Cambon, Baumgartner, 

Brock, Cooper, & Rai (2015b, [20])  methods were proposed for modifying or extending 

nonparametric and parametric classifiers for use in an ASD setting. In this work empirical power 

of these methods is evaluated under scenarios which include treatment expression interaction 
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only, expression main effect and treatment interaction, and both treatment and expression main 

effects together with interaction. 

Organization of Study 

Section 2 covers the background for the ASD model. Section 3 outlines extensions and 

modifications of ASD method, and Section 4 describes the simulation study. Results are in 

Section 5, and discussion is found in Section 6. 

2. Background of ASD Model 

The sample sizes of subjects for Stage 1 and Stage 2 are n1 and n2 respectively, and the total 

sample size is 1 2.n n n   Stage 1 serves as the training set where the prediction models is built 

(using nested cross validation), and Stage 2 patients serve as the final validation set where patient 

sensitivity is predicted. 

A subject that is sensitive to treatment has a greater probability of response on the treatment 

arm than on the control arm. The probability that any new subject accrued into the study is 

sensitive is ,Sp  and is the probability of response given iS s  and ,iT t  where {0,1}iS   and 

{0,1}iT   are random variables for patient sensitivity status and patient treatment arm status 

respectively, and can take on values of 0 and 1. The number of evaluated genes is p. Within these 

p genes it is assumed that there is a set of predictive genes which can be used to predict 

sensitivity status of subjects. Without loss of generality, it is assumed that the first m genes, 

1,..., ,k m are the predictive genes. The p-length vector of gene expression for subject i is 

denoted by random variable iZ , and the kth element of that vector (gene expression for the kth 

gene for subject i) is .ikZ  Fixed realization of these quantities are denoted by lower case letters. 

The model relating expected value of gene expression for predictive genes

( ), 1,...,ikE Z k m , patient sensitivity and treatment arm status to response probability 
iRp  can 

be written: 
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    


Z

                 (4.1) 

Now, if expected value of expression for predictive gene depends only on sensitivity status of 

subject, (i.e.- ( | )ik i skE Z S s   ) then subscript i can be dropped since probability of response 

no longer depends on i, and for a sensitive subject on the treatment arm: 

 11 0 1 2 1 12 1
1

logit( ) logit( | 1, 1) ,
m

R R j k k k

k

p p S T      


                                                   

and similarly for 
10Rp , 01Rp , and 

00
.Rp  

A multi-gene logistic regression model can be used in an ASD setting. For example using 

maximum likelihood estimates from the training set substituted for true unknown parameter 

values, and using genes selected based on their estimated predictive strength in place of the true 

unknown predictive genes, and ikz the expression value for subject i and selected gene k in the 

validation set in place of sk  is: 

 * * * *

*

* 0 1 2 12
* 1

ˆ ˆ ˆ ˆˆ ˆlogit( ) logit( | , ) ,
ti

m

R R i ik i ik ik k ik
k

p p t z t z t z   


         

where * 1,..., *k m  are the m* genes predicted to be sensitive (using the DR step), and where 

information to predict is  must be derived from the *ikz in place of the sk , as well as the 

estimated model coefficients, and their relationship with ti. The treatment arm odds ratio for 

subject i is then 

* *1 0
*

*

1 12
1

ˆ ˆˆ ˆexp logit( ) logit( ) exp .
i i

m

i R R k ik
k

OR p p z 


 
      

 
  
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As in the Freidlin & Simon, prediction of sensitive patients can also be done using weighted 

voting on the odds ratios for each of the single gene models for the selected genes. The odds 

ratios for each of selected gene k* is then 

 * * *1 * 0 *
* 1 12

ˆ ˆˆ ˆexp logit( ) logit( ) exp .
ik ik

ik R R k k ik
OR p p z        

Figure 5 gives more details. Nested validation sets are used for selection of the final tuning 

parameter set, and the final validation set is used for final prediction of sensitive patients. Note 

that in the Freidlin & Simon’s ASD single gene model, parameter 2  for gene expression main 

effect is not included. This is equivalent to modeling no gene expression main effect. 

3. Extensions and Modifications of ASD Method 

The following classification methods were used in the simulation scenarios. They were 

outlined in detail in Cambon, Baumgartner, Brock, Cooper, Wu, & Rai (2014a [19]) and in 

Cambon, Baumgartner, Brock, Cooper, Wu, & Rai (2014b [20]). 

1. Same weighted voting logistic regression single gene model as in Freidlin & Simon: no 

parameter for gene main effect ( 2  constrained to be 0). This is called the LRTWV model. 

2. Same model as #1 above, but including both main effects and interaction; i.e. - 1 , 2  and 

12 . This is called the LRTGWV model. 

3. From Cambon et al. (2014a [19]): 

a. Weighted voting kernel density analysis using posterior odds ratio- which is the 

odds ratio based on treatment arm and class-specific posterior probabilities. In 

terms of effects included in model, KDATWV corresponds to LRTWV, and 

KDATGWV corresponds to LRTGWV. Note this since these are single gene weighted 

voting models, independence is assumed between genes. This is also the case for 

#4 and #5 below. 

4. From Cambon et al. (2014b [20]): 
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a. Weighted voting quadratic discriminant analysis (QDATWV and QDATGWV) using 

posterior treatment odds ratio.  

b. Linear discriminant analysis weighted voting (LDATWV and LDATGWV) posterior 

treatment odds ratio. 

The LRTWV weighted voting model described in Freidlin & Simon excludes the term for gene 

expression main effect. In order to have comparable models for KDATWV, QDATWV, and 

LDATWV, the class-specific densities for expression on the control arm were constrained to be 

equal in the TWV models. 

4. Simulation Study 

The distribution of expression of predictive genes depends on sensitivity status; i.e.-   

1| ~ MVN( , ); (1,..., ,..., ), (1,..., ),s SS s i n n k m   Z μ Σ  where Z is the n by p matrix of 

gene expression, but it is independent of treatment assignment; the results of the assay are not 

used to assign subjects to a specific treatment arm. 

Pr( , ) Pr( )Pr( ),  1,..., ; 1,..., .ik i ik iZ T Z T i n k p    The distribution of expression of predictive 

genes for sensitive patients is not independent of response: 

Pr( , ) Pr( )Pr( );  s.t. 1, 1,...,ik i ik i iZ Y Z Y i S k m     but it is independent of response for 

nonsensitive patients: Pr( , ) Pr( )Pr( );  s.t. 0, 1,..., .ik i ik i iZ Y Z Y i S k m    For the non-

predictive genes, expression is independent of response for all patients; i.e.: 

Pr( , ) Pr( )Pr( ); 1,..., ;  1,..., .ik i ik iZ Y Z Y i n k m p    The nonpredictive genes are constrained 

to have the same mean as the predictive genes for non-sensitive subjects, but they are allowed to 

have different variance: i.e.:  2
0~ ( , ), 1,..., , 1,..., . ik nsZ N i n k m p      

Simulation Steps 

1. Fix parameters n1 and n2. 
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a. In practice, methods  such as those proposed by Dobbins and Simon (2011 [35]) 

can be used to apportion n to n1 and n2. 

2. Allocate Type I error to 1  and 2.  

a. 1 0.04   and 2 0.01  were used exclusively in this work. 

3. Select list of tuning parameter sets for ASD design. 

a. Since all methods in this simulation were based on odds ratios similar to those 

used in Freidlin & Simon, the list of tuning parameter sets are similar to those 

outlined in that work, however a wider range was included. For example the list 

consisted of 9 sets of tuning parameters (vs. 3 in Freidlin & Simon) with p-values 

of 0.01 as well as 0.02 included for the dimension reduction step. 

4. Simulate subject sensitivity status over all n subjects using Bernoulli distribution with 

parameter Sp  .  

5. Conditional on Si, 1, 1,..., ,..., ,i i n n    and 1,..., ,k m  simulate gene expression ikZ  for 

predictive genes. 

6. Simulate gene expression for non-predictive genes, k=m+1,…,p. 

7. Divide training set 11,...,i n  into nested train and validation sets. 

a.  In this work, 10-Fold cross validation (CV) was used; approaches such as nested 

bootstrap could also be used. 

8. Use each set of tuning parameters to predict patient sensitivity on the nested validation sets in 

the training set 11,..., ;i n  

a. If CV is used, this results in exactly 1 prediction for each subject in the training 

set for each of the tuning parameter sets. 

b. It was found that use of low p values (such as 0.01) to select a small number of 

genes may cause the simulation to fail, since at times no genes will be selected. 
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To prevent this, code was added to select a minimum of 3 genes. This option 

permitted a wider choice of tuning parameter p-values to select genes. 

9. Select the set of tuning parameters that results in the lowest p-value of treatment-control 

comparison of predicted sensitive patients, and this set for prediction of sensitive patients in 

the validation set. 

10. Repeat these steps B times for each value of 
Sp  used in the simulation. 

In this work there were B= 100 simulations for each scenario in Tables 9 through 13. 

Tables 14 and 15 used 1000 simulations for each scenario in order to elucidate differences 

between methods. 

11. Conserve Type 1 error   as described in Figure 5 using 1  for the overall test and 2  for 

the subset test.  

Simulation Scenarios 

The following parameters were common to all simulations: 

1) The number of predictive genes p*=10; total number of genes p=1000.  

2) Type 1 error for either the overall test or the subset test was controlled at level 0.05 by setting 

1 0.04   and 2 0.01.   

3) The distribution of  genes used was the same as in Freidlin, Jiang, & Simon (2010 [55]): 

a. For sensitive patients, expression of predictive genes is normally distributed with 

mean of 1 and variance of 0.25;  

b. For nonsensitive patients, expression of predictive genes is normally distributed 

with mean of 0 and variance 0.01;  

c. The expression of non-predictive genes is normally distributed with mean of 0 

and variance of 0.25. 

The following simulation scenarios were used: 

1. Values for Sp  of 0.05, 0.07, 0.10, 0.15, 0.20, and 0.25. 
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2. The combination of values for 
STRp  used in simulation scenarios are shown for each table of 

results. These include scenarios involving: 

a. Only gene-treatment interaction (from the Freidlin & Simon 2005 work). 

b. Gene main effect together with gene-treatment interaction. 

c. Both main effects and interaction. 

3. The different classification methods described in Section 3 were applied over these different 

scenarios. Note that the simulation scenarios are distinct from model parameters used in the 

classification methods to predict patient sensitivity.  

5. Results 

Tables 9, 10, and 11 include results for gene expression treatment interaction only, with Table 

9 showing results with no correlation between genes, Table 10 showing results with correlation of 

0.6 between predictive gene and 0.6 between nonpredictive genes, and Table 11 including smaller 

sample sizes for Stage 1 and Stage 2 (100 patients for each stage instead of 200). Table 12 

includes a scenario for gene expression main effect as well as expression-treatment interaction. 

Table 13 includes a scenario for gene expression main effect, treatment main effect, and gene 

expression-treatment interaction. Under most scenarios considered, the predictive models which 

included coefficients main effect terms for treatment only (together with treatment-gene 

expression interaction – the TWV models) had higher empirical power compared to models 

which included both expression and treatment main effects together with interaction(all models 

included treatment interaction term).  

In order to compare the methods under different scenarios, additional simulations were 

conducted. Since empirical power of the different methods was similar, 1000 simulation runs per 

scenario were used to differentiate between the methods. Table 14 compares empirical power of 

LRTWV, KDATWV, LDATWV, and QDATWV methods under scenarios similar to those used in the 

Freidlin and Simon work. That is, the ratio of the variances of gene expression for predictive 
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genes for sensitive subjects vs. nonsensitive subject was kept at 25 to 1. Under this scenario, 

empirical power of LRTWV was slightly higher than LDATWV, which in turn was slightly higher 

than QDATWV , which was slightly higher than KDATWV. Table 15 then shows empirical power of 

LRTWV and  LDATWV when variances of gene expression for predictive genes for sensitive subjects 

vs. nonsensitive subject  is kept equal (ratio of 1 to 1). Under these scenarios, the empirical power 

of LDATWV is slightly higher than that of LRTWV.  

6. Discussion 

Relationship between Probability of Sensitivity and Power of Adaptive Signature Design 

As pointed out in Freidlin & Simon (2005 [54]), when Sp  is small, the probability that there 

is a significant overall treatment effect is small, because the sample size of sensitive subjects is 

small. In this situation, there still may be a significant treatment effect in the predicted set of 

sensitive patients if the treatment effect in the subset is large. As Sp  increases, the subset of 

sensitive patients also increases, and if the treatment effect in this subset remains constant, the 

probability of detecting a significant treatment effect in the subset increases. However at the same 

time the probability that the overall test detects a significant treatment effect also increases. At 

some point, the added value of the test of treatment effect in the predicted subset decreases, 

because it is less likely that both the test over all the patients is insignificant while the subset test 

is significant. This relationship is reflected in Tables 9 through 11. The “Subset only 0.01” 

column, which is proportion of times that the subset test was significant when the overall test was 

not, usually increases as Sp  increase from 0.05 to 0.15 (results for 0.05Sp   not shown), and 

then decreases thereafter. However the overall power of the ASD test, which is significant if 

either the overall test or the predicted subset test is significant, continues to increase as Sp  

increases.  
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Main Effects and Interaction Terms in the ASD Model 

In clinical applications, models which include interaction terms usually also include 

corresponding main effect terms. For example, in a treatment subset prediction context, see 

Scher, Nasso, & Simon (2011 [144]). Therefore it is interesting that the TWV models had 

superior performance to TGWV models under the scenarios considered. Also KDATWV and 

QDATWV models had power close to performance of LRTWV and KDATGWV and QDATGWV similar 

to LRTGWV. The performance of the corresponding LDA models were slightly lower, as would be 

expected since variances of predictive genes for sensitive patients were 25 times the variances of 

predictive genes for nonsensitive patients. 

Limitations 

1. In this work the response was assumed to be categorical. However in many clinical trials, 

response to treatment may be continuous. For example progression free response may be 

determined from a measurement of tumor size or change in size. 

2. In some works clinical covariates or gene expression results may be used to assign patients to 

a specific treatment regimen; for example see Lu, Zhang, & Zeng (2013 [107]). However in 

this work we limit ourselves to the situation in which the distributions of expression of 

predictive genes and non-predictive genes are independent of treatment; i.e. patients are 

randomized independently of results of assay.  

3. Real data sets were not used to simulate gene expression. Further work needs to be done 

examining the performance of the various methods with real data sets. 

4. The type 1 error can be split up between the overall test and the subset test in different ways. 

For example, if it is hypothesized that is only a very small (or even no) overall treatment 

effect, but a large treatment effect for a subset of patients, most of the Type 1 error can go to 

the predicted subset. This was the approach used in Scher et al., (2011 [144]). 
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Future Work 

The KNN (K Nearest Neighbors) using in Dudoit et al. (2002 [39]) uses 1 – correlation as a 

distance measure to determine the nearest neighbors. The decision rule to determine class is 

,ˆ ( 0.5)i i NNg I p   where ˆ
ig  is the 0-1 classification decision for subject i, and pi,NN is the 

proportion of training set nearest neighbors for patient i belonging to class g=1. This approach 

performed well in the Dudoit et al. work (2002 [39]). One approach to apply KNN to treatment 

subset prediction would be to compare this difference in proportion across the two treatment 

groups. Subjects which have a large difference in proportions would be predicted to be sensitive 

(Cambon et al., 2014a [19]). However this difference in proportions does not make direct use of 

the underlying distance measure (which in the Dudoit et al. work is 1 – correlation) for treatment 

subset prediction. Work is underway in developing this method for treatment subset prediction. 

Work is also underway to develop code for multi-gene penalized versions of LDA such as 

Modified Linear Discriminant Analysis or MLDA (Xu, Brock, & Parrish, 2009 [177]). Use of 

multi-gene penalized logistic regression models is another appealing avenue for exploration. 
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Table 9:  PR11=0.98, PR10=PR01=PR00=0.25. (Expression-Treatment Interaction Effect Only); 0.   

Sp  Method Subset .01 Subset Only 
.01 ASD.overall 

0.10 LRTWV 0.68 0.46 0.82 

 KDATWV 0.62 0.39 0.75 

 QDATWV 0.61 0.40 0.76 

 LDATWV 0.67 0.44 0.80 

 LRTGWV 0.57 0.38 0.74 

 KDATGWV 0.59 0.40 0.76 

 QDATGWV 0.56 0.38 0.74 

 LDATGWV 0.52 0.35 0.71 

0.15 LRTWV 0.89 0.35 0.93 

 KDATWV 0.84 0.32 0.90 

 QDATWV 0.84 0.34 0.92 

 LDATWV 0.85 0.33 0.91 

 LRTGWV 0.79 0.31 0.89 

 KDATGWV 0.81 0.33 0.91 

 QDATGWV 0.81 0.32 0.90 

 LDATGWV 0.77 0.32 0.90 

0.20 LRTWV 0.99 0.24 1.00 

 KDATWV 0.95 0.22 0.98 

 QDATWV 0.97 0.24 1.00 

 LDATWV 0.99 0.24 1.00 

 LRTGWV 0.92 0.23 0.99 

 KDATGWV 0.96 0.24 1.00 

 QDATGWV 0.94 0.23 0.99 

 LDATGWV 0.91 0.21 0.97 

Sp - probability any patient is sensitive; PRST-Probability of response given S=s and T=t, where S and T are 
Sensitivity and Treatment indicators; Subset.01-subset test at level .01; Subset Only .01- Only subset test significant 
(Overall.04 test not significant); ASD overall - overall empirical power of ASD- either Overall .04 test significant or 
Subset .01 test significant;  Overall .04 test empirical power at Type 1 error 0.04:  0.22, 0.36, 0.58, 0.76 – for pS =0.07, 
0.10,0.15, and 0.20;LR-Logistic Regression; TWV-weighted voting model with only treatment main effect and 
expression-treatment interaction; TGWV-weighted voting model with expression and treatment main effects and 
interaction. Mean and variance of expression for predictive genes for sensitive patients =1 and 0.25 respectively; mean 
and variance for predictive genes for nonsensitive patients =0 and 0.01 respectively. Mean and variance for 
nonpredictive genes= 0 and 0.25.  - correlation within block of predictive genes and within block of nonpredicitve 
genes. Correlation between the two blocks =0 for all simulations. 
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Table 10: PR11=0.98, PR10=PR01=PR00=0.25. (Expression-Treatment Interaction Only); 0.6.   

Sp  Method Subset .01 Subset Only  
.01 ASD.overall 

0.10 LRTWV 0.59 0.38 0.74 

 KDATWV 0.59 0.41 0.77 

 QDATWV 0.62 0.43 0.79 

 LDATWV 0.53 0.33 0.69 

 LRTGWV 0.49 0.31 0.67 

 KDATGWV 0.52 0.36 0.72 

 QDATGWV 0.48 0.31 0.67 

 LDATGWV 0.47 0.30 0.66 

0.15 LRTWV 0.85 0.33 0.91 

 KDATWV 0.84 0.34 0.92 

 QDATWV 0.81 0.32 0.90 

 LDATWV 0.80 0.29 0.87 

 LRTGWV 0.75 0.26 0.84 

 KDATGWV 0.68 0.26 0.84 

 QDATGWV 0.73 0.27 0.85 

 LDATGWV 0.64 0.20 0.78 

0.20 LRTWV 0.95 0.21 0.97 

 KDATWV 0.91 0.21 0.97 

 QDATWV 0.92 0.22 0.98 

 LDATWV 0.95 0.21 0.97 

 LRTGWV 0.90 0.21 0.97 

 KDATGWV 0.87 0.20 0.96 

 QDATGWV 0.88 0.21 0.97 

 LDATGWV 0.86 0.20 0.96 
See Table 9 for notation/abbreviations. Overall empirical power at Type 1 error 0.04:  0.22, 0.36, 0.58, 0.76 – for pS 
=0.07, 0.10, 0.15, and 0.20. 
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Table 11: Small Sample Size Simulation Scenario PR11=0.98, PR10=0.25, PR01=PR00=0.25; n1=n2=100, 0.    

Sp  Method Subset .01 Subset Only  
.01 ASD.overall 

0.10 LRTWV 0.08 0.08 0.24 
 KDATWV 0.05 0.05 0.21 
 LDATWV 0.08 0.07 0.23 
 QDATWV 0.08 0.07 0.23 

0.15 LRTWV 0.22 0.12 0.43 
 KDATWV 0.18 0.09 0.40 
 LDATWV 0.19 0.12 0.43 
 QDATWV 0.19 0.13 0.44 

0.20 LRTWV 0.50 0.14 0.76 
 KDATWV 0.45 0.09 0.71 
 LDATWV 0.44 0.09 0.71 
 QDATWV 0.50 0.11 0.73 

0.25 LRTWV 0.72 0.13 0.91 
 KDATWV 0.65 0.11 0.89 
 LDATWV 0.71 0.13 0.91 
 QDATWV 0.67 0.13 0.91 

See Table 9 for notation/abbreviations. Overall power at 0.04: 0.16,0.31,0.62, and 0.78  for pS=0.10,0.15, 0.20,.25.  
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Table 12: Gene Main Effect, and Gene-Treatment Interaction:PR11=0.98, PR10=0.35, PR01=PR00=0.25, 0.   

Sp  Method Subset .01 Subset Only  
.01 ASD.overall 

0.07 LRTWV 0.10 0.07 0.26 
 KDATWV 0.12 0.07 0.26 
 QDATWV 0.11 0.08 0.27 
 LDATWV 0.08 0.05 0.24 
 LRTGWV 0.07 0.06 0.25 
 KDATGWV 0.09 0.07 0.26 
 QDATGWV 0.08 0.05 0.24 
 LDATGWV 0.07 0.06 0.25 

0.10 LRTWV 0.43 0.35 0.57 
 KDATWV 0.38 0.32 0.54 
 QDATWV 0.44 0.36 0.58 
 LDATWV 0.41 0.34 0.56 
 LRTGWV 0.36 0.30 0.52 
 KDATGWV 0.33 0.27 0.49 
 QDATGWV 0.40 0.32 0.54 
 LDATGWV 0.29 0.25 0.47 

0.15 LRTWV 0.77 0.39 0.85 
 KDATWV 0.68 0.34 0.80 
 QDATWV 0.72 0.38 0.84 
 LDATWV 0.76 0.39 0.85 
 LRTGWV 0.66 0.36 0.82 
 KDATGWV 0.65 0.36 0.82 
 QDATGWV 0.61 0.30 0.76 
 LDATGWV 0.62 0.30 0.76 

0.20 LRTWV 0.90 0.33 0.94 
 KDATWV 0.86 0.28 0.89 
 QDATWV 0.89 0.32 0.93 
 LDATWV 0.85 0.29 0.90 
 LRTGWV 0.79 0.26 0.87 
 KDATGWV 0.79 0.27 0.88 
 QDATGWV 0.81 0.29 0.90 
 LDATGWV 0.76 0.26 0.87 

See Table 9 for notation/abbreviations. Overall power at 0.04: 00.22,0.36,0.58, and 0.76 for pS =0.07, 0.10,0.15, and 
0.20. 
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Table 13: Sensitivity Main Effect, and Treatment Main Effect, and Sensitivity-Treatment Interaction: PR11=0.98, 
PR10=0.35, PR01=0.35, PR00=0.25, 0.   

Sp  Method Subset .01 Subset Only  
.01 ASD.overall 

0.07 LRTWV 0.07 0.00 0.78 

 KDATWV 0.10 0.01 0.79 

 QDATWV 0.06 0.01 0.79 

 LDATWV 0.05 0.00 0.78 

 LRTGWV 0.10 0.00 0.78 

 KDATGWV 0.11 0.00 0.78 

0.10 LRTWV 0.35 0.03 0.94 

 KDATWV 0.30 0.02 0.93 

 QDATWV 0.33 0.01 0.92 

 LDATWV 0.26 0.03 0.94 

 LRTGWV 0.27 0.01 0.92 

 KDATGWV 0.27 0.02 0.93 

0.15 LRTWV 0.67 0.01 1.00 

 KDATWV 0.55 0.01 1.00 

 QDATWV 0.58 0.01 1.00 

 LDATWV 0.60 0.01 1.00 

 LRTGWV 0.46 0.01 1.00 

 KDATGWV 0.51 0.01 1.00 

0.20 LRTWV 0.76 0.02 0.99 

 KDATWV 0.76 0.02 0.99 

 QDATWV 0.76 0.03 1.00 

 LDATWV 0.73 0.01 0.98 

 LRTGWV 0.68 0.02 0.99 

 KDATGWV 0.72 0.02 0.99 
See Table 9 for notation/abbreviations. Overall power at 0.04: 0.78,0.91,0.99, and 0.97 for pS =0.07, 0.10,0.15, and 
0.20. 
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Table 14: Comparison of TWV Methods under simulation scenarios similar to Freidlin and Simon work (unequal 
variances for gene expression for predictive genes between sensitivity classes). PR11=0.98, PR10=0.25, PR01=0.25, 
PR00=0.25, 0.   
 
Method Ps Overall.04 Subset.01 Subset Only  .01 ASD Overall 

LRTWV 0.10 0.35 0.63 0.41 0.75 

KDATWV 0.10 0.35 0.57 0.36 0.70 

LDATWV 0.10 0.35 0.61 0.40 0.74 

QDATWV 0.10 0.35 0.59 0.38 0.72 

LRTWV 0.15 0.50 0.78 0.36 0.86 

KDATWV 0.15 0.50 0.73 0.32 0.83 

LDATWV 0.15 0.50 0.76 0.35 0.86 

QDATWV 0.15 0.50 0.74 0.34 0.84 

LRTWV 0.20 0.64 0.85 0.28 0.91 

KDATWV 0.20 0.64 0.82 0.25 0.89 

LDATWV 0.20 0.64 0.84 0.27 0.91 

QDATWV 0.20 0.64 0.83 0.26 0.90 
See Table 9 for notation/abbreviations. 
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Table 15: Comparison of LRTWV and LDATWV methods when variances of gene expression for predictive genes are 
constrained to be equal PR10=0.25, PR01=0.25, PR00=0.25, 0.   

Method Stdev PR11 
Overall 

0.04 Subset.01 
Subset 
.01 Only 

ASD 
Overall 

LDATWV 0.40 0.90 0.53 0.24 0.08 0.61 

LDATWV 0.35 0.90 0.53 0.28 0.10 0.63 

LDATWV 0.30 0.90 0.54 0.34 0.12 0.66 

LRTTWV 0.40 0.90 0.53 0.21 0.06 0.59 

LRTTWV 0.35 0.90 0.53 0.26 0.08 0.61 

LRTTWV 0.30 0.90 0.54 0.31 0.10 0.63 

LDATWV 0.40 0.98 0.62 0.48 0.16 0.77 

LDATWV 0.35 0.98 0.63 0.56 0.17 0.80 

LDATWV 0.30 0.98 0.63 0.64 0.20 0.83 

LRTTWV 0.40 0.98 0.62 0.45 0.14 0.76 

LRTTWV 0.35 0.98 0.63 0.54 0.16 0.79 

LRTTWV 0.30 0.98 0.63 0.62 0.18 0.82 

LDATWV 0.40 0.98 0.49 0.27 0.11 0.597 

LDATWV 0.35 0.98 0.50 0.35 0.14 0.633 

LDATWV 0.30 0.98 0.50 0.43 0.18 0.677 

LRTTWV 0.40 0.98 0.49 0.28 0.10 0.595 

LRTTWV 0.35 0.98 0.50 0.33 0.13 0.626 

LRTTWV 0.30 0.98 0.50 0.41 0.16 0.664 
Stdev- standard deviation for gene expression for predictive genes and nonpredictive genes; difference 
between means of gene expression for nonsensitive vs sensitive subjects = 1. See Table 9 for other 
notation/abbreviations. 
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tobacco products and the relationship between tobacco product use and subclinical progression of 
cardiovascular disease to identify sensitive and robust biomarkers of cardiovascular injury related 
to tobacco product exposure. These studies will help to identify the relative sensitivity of specific 
domains of cardiovascular injury that are sensitive to tobacco exposure and facilitate the 
identification of harmful and potentially harmful constituents of current, new and emerging 
tobacco products that cause cardiovascular injury and how the impact of these constituents on 
cardiovascular disease outcomes could be measured. 
 
Percentage: 40 
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Role: Biostatistician 
 
Litvan (PI)           2006 – present 
Grant Number: OICB070384, Genetic and Environmental Risk Factors for PSP National 
Institutes of Health.  
 
The long-range goal of this research is to develop efficacious interventions to delay, slow, or stop 
the progression of progressive supranuclear palsy (PSP) and related tauopathies.  
 
I co-wrote statistical section of NIH grant proposal for a longitudinal study for PSP, and for 
CURE PSP longitudinal study. I also reviewed grant proposals and manuscripts. I do data 
analysis, sample size planning, report generation, and manuscript review and editing. 
 
Percentage: 15 (150% total given in June and July of 2013 to cover 2013-2014 period) 
Role: Biostatistician  
 
b. Past Grant Support 
 
DeFilippis (PI)   2012-2013 
  
Grant Number OICB120508, AHA-Great Rivers, "Early Diagnosis of Atherothrombotic Acute 
Coronary Syndrome" 
Percentage: 25 
Role: Biostatistician 
 
I did statistical analysis, wrote up reports, and participated in manuscript editing and review. 
 
Ramos (PI)   2007-2011 
 
NIH/NIEHS           
          2007-2011 
Grant Number:  5P30ES014443-02 (Ramos) 
Project Title:  Center for Environmental Genomics and Integrative Biology (Bioinformatics, 
Biostatistics and Computational Biology Core) 
To create a “Knowledge Exchange Network” that results in promotion of research and 
educational programs in environmental genomics and integrative biology; provide University of 
Louisville investigators an outstanding intellectual environment that supports innovation in 
environmental health sciences; promote collaborative research activities among Center 
investigators and recruit new talent into the field of environmental health sciences; continue 
developing genomics and integrative biology approaches to support investigations focusing on 
environmental cardiology, environmental carcinogenesis and developmental origins of health and 
disease; and to expand bench-to-bedside, bench-to-community, and reciprocal activities at 
University of Louisville that benefit underserved communities in the Louisville area. Role: 
Biostatistician/perform microarray analysis 
 
Role: Biostatistician (including bioinformatics), Data Management 
 
c. Contract Support 
 
Diana Han (PI) 
GE Industrial Athlete Program 
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The purpose of the study is to determine if a planned intervention consisting of ergonomic 
improvements and a focused training and exercise regimen will increase Functional Movement 
Screen (FMS) scores and reduce worker-related injuries. 
 
Percentage: 20 
Role: Biostatistician 
 
d. Supervisory 
 
I jointly supervise 3 Master-Level Biostatisticians. 
 
e. Projects 
 
• Analysis of Phase I, II, and III Clinical trials. 
• Reviewing statistician for over 20 clinical trial protocols. Includes assisting investigators 

with defining research objectives, generating professional-quality reports including 
statistical reports, checking and performing sample size calculations, giving guidance on 
randomization procedures. 

• Dissertation topic: Adaptive Signature Design to predict a subset of subjects responding 
differently to treatment using genomic data. 

• Wrote statistical reports and performed survival analysis for study involving endometrial 
cancer. 

• Analysis of Matched Case-Control Study. 
• Pathway, cluster analysis, differential gene expression, classification and machine 

learning for bioinformatics/high throughput data projects. 
• Microarray Analysis for Agilent, Affymetrix, two-color Platforms. 
• Creation of Phase III Clinical Trial Protocol template for department staff and faculty. 
• Multi-rater reliability analysis. 
• Statistical Consulting Center projects in microarray analysis: involved helping 

investigators with research objectives and study design issues. 
• Probe level linear mixed model analysis for microarray data involving overproduction of 

sphingosine kinase. 
• Microarray analysis for experiment involving apoptosis induced retinal ganglion cells. 
• Power analysis to compare diagnostic tests for flu. 
• HW (Hardy Weinberg) equilibrium analysis for case control study involving diseased 

(Progressive Supranuclear Palsy) and normal offspring. 
• Consultant for meta analysis study for small cell lung cancer. 
• Survival analysis, recurrent events analysis, and longitudinal analysis for congestive heart 

failure study, using SAS, S-PLUS, and R.  
• SAS analysis for BRFSS (Behavioral Risk Factor Surveillance System) study for APHA 

presentation “Comparable compliance for comparable preventive health services in 
American men and women” by Martin Weinrich. 

• National Health Interview Survey analysis on prostate cancer using SUDAAN. 
 
GE Appliances, Reliability Statistician, Louisville, KY              1999-2003 
 
• Implemented survival analysis methodology for Supplier Quality, including accelerated 

testing (e.g. Arrhenius, Inverse Power models), degradation analysis, power analysis, 
distribution fitting, mixture distribution analysis, comparison testing using relative 
likelihood, and calculation and application of confidence intervals.  



131 
 

• Led projects qualifying more than 15 components on new product introductions, 
performing process capability analysis and variance components analysis. 

• Led projects or played key role in projects saving more than $3 MM annually in service 
calls. 

• Taught graduate course lecture in Reliability Testing (Survival Analysis). This course 
receives graduate credit at University of Louisville. Provided statistical consulting for 
managers, quality leaders, and engineers.  

• Developed and conducted training for reliability testing and analysis. Co-developed and 
taught curriculum for logistic regression short course.  

• Implemented Internet-based Supplier Survival Analysis System. Suppliers can enter time-
to-event data for components. Software allows GE contact to set sample size and alarm 
limits based on Type I and Type II errors. Received $1000 GE patent award and US 
patent. 

• Designed and tested smoothing algorithm for new GE dryer. Received $1000 GE patent 
award. Algorithm implemented in new product launch. 

• Co-developed and implemented standing instruction template to standardize reliability 
testing and qualification of components and systems. 

• Statistical Methods include design of experiments for manufacturing processes, logistic 
regression, nonlinear models, power analysis, comparison analysis using relative 
likelihood, general linear models, mixture models, categorical data analysis, smoothing 
and forecasting methods. 

 
GE Plastics, Internal Statistical Consultant, Pittsfield, MA  1996-1999  
 
• Implemented Monte Carlo Simulation for transactional and manufacturing processes. 

Conducted training in Monte Carlo simulation. Corroborated with GE Corporate 
Research Ph.D. Statisticians in selection of corporate simulation package. 

• Conducted extensive training for six sigma projects. Training included Design of 
Experiments, Regression, ANOVA.  

• Co-developed statistical process control module and training for GE Plastics. 
• Statistical Methods included Mixed Models, Logistic Regression, Response Surface 

Analysis, Design of Experiments, General Linear Models, ANOVA, Monte Carlo 
simulations. 

 
Graco Children’s Products, Manufacturing Statistician, Elverson, PA      

        1987-1996 
• Implemented statistical process control in metal stamping, plastics injection molding, 

paint line, tube bending, and assembly line.  
• Designed and implemented design of experiments on injection molding equipment – 

achieved >$30,000 cost avoidance.  
• Designed statistical process control chart and decision rules to reduce inventory 

fluctuations and smooth out delivery to major customer. 
• Taught basic statistics, measurement analysis, statistical process control, design of 

experiments. 
• Statistical methods include ARIMA time series, random effects models, statistical 

process control, design of experiments, regression. 
 
Mennonite Central Committee, Water Resource and Health Development Engineer, Burkina Faso 

West Africa        1982-1985  
 
• Trained villagers to build small earthen dams to hold water for use during the dry season.  
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• Taught basic health related to water usage.  
 
4.  PUBLICATIONS 
 
Cambon AC, Khalyfa A, Cooper N, and Thompson C. Analysis of probe level patterns in 

Affymetrix microarray data. BMC Bioinformatics, 8(1):146, 2007. 
Kalbfleisch T, Cambon AC, and Wattenberg BW. A Bioinformatics Approach to Identifying 

Tail-anchored Proteins in the Human Genome. Traffic, 8(12):1687-1694, 2007. 
Litvan I, Chism A, Litvan J, Cambon AC, and Hutton M. H1/H1 genotype influences symptom 

severity in corticobasal syndrome. Movement Disorders, 25:760-763, 2010. 
Luo D, Cambon AC, and Wu D. Evaluating the long-term effect of FOBT in colorectal cancer 

screening. Cancer Epidemiology, 36:e54-e60, 2011. 
Eng M, Zhang J, Cambon AC, Marvin MR, and Gleason J. Employment outcomes following 

successful renal transplantation. Clinical Transplantation, 26:242-246, 2011. 
Kong M, Cambon AC, and Smith M. Extended logistic regression model for studies with 

interrupted events, seasonal trend and serial correlation. Communications in Statistics-
Theory and Methods, 41:3528-3543, 2012.  

Potts LF, Cambon AC, Ross OA, Rademakers R, Dickson DW, Uitti RJ, Wszolek ZK, Rai SN, 
Farrer MJ, and Hein DW. Polymorphic genes of detoxification and mitochondrial 
enzymes and risk for progressive supranuclear palsy: A case control study. BMC Medical 

Genetics, 13:16, 2012. 
Smith MJ, Kong M, Cambon AC, and Woods CR. Effectiveness of Antimicrobial Guidelines for 

Community-Acquired Pneumonia in Children. Pediatrics, 129:e1326-e1333, 2012. 
Newton TL, Fernandez-Botran R, Miller JJ, Cambon AC, Burns VE, and Allison KE. 

Posttraumatic Stress Symptom Severity and Inflammatory Processes in Midlife Women. 
Psychological Trauma: Theory, Research, Practice, and Policy, 5(5): 439-447, 2012. 

Rai SN, Pan J, Cambon AC, Gargett N, and Chaires JB. Group Classification based on High-
Dimensional Data: Application to Differential Scanning Calorimetry Plasma 
Thermogram Analysis of Cervical Cancer and Control Samples. Open Access Medical 

Statistics, 2013(3): 1-9, 2013. 
 DeFilippis AP, Rai SN, Cambon AC, Miles RJ, Jaffe AS, Moser AB, Jones RO, Bolli R, and 

Schulman SP. Fatty acids and TxA2 generation, in the absence of platelet-COX-1 
activity. Nutrition, Metabolism & Cardiovascular Diseases, 24(4): 428-433, 2014. 

Barton C, Kouokam JC, Lasnik AB, Foreman O, Cambon AC, Brock GN, Montefiori DC, 
Vojdani F, McCormick AA, O’Keefe BR, and Palmer KE. Activity of and Effect of 
Subcutaneous Treatment with the Broad-Spectrum Antiviral Lectin Griffithsin in Two 
Laboratory Rodent Models. Antimicrobial Agents and Chemotherapy, 58(1):120-127, 
2014. 

Rai SN, Ray HE, Pan J, Barnes C, Cambon AC, Wu X, Bonassi S, and Srivastava DK. Phase II 
Clinical Trials: Issues and Practices. Biometrics and Biostatistics International Journal, 
1(2): 1-3, 2014. 

Cambon AC, Baumgartner KB, Brock GN, Cooper NGF, Wu D, and Rai SN. Classification of 
Clinical Outcomes Using High-Throughput Informatics: Part 1- Nonparametric Method 
Reviews. Model Assisted Statistics and Applications, In Press, 2014. 

Cambon AC, Baumgartner KB, Brock GN, Cooper NGF, Wu D, and Rai SN. Classification of 
Clinical Outcomes Using High-Throughput Informatics: Part 2- Parametric Method 
Reviews. Model Assisted Statistics and Applications, Accepted, 2014. 
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Submitted 
 
Steiner RWP, Brock GN, Cambon AC, Anderson SA, Lewis JN, and Morse JH. Evaluating the 

Impact of a Work Site Tobacco Smoking Ban on Healthcare Utilization among Active 
Employees. Nicotine and Tobacco Research, April 2014. 

Amraotkar AR, Cambon AC, Rai SN, Keith MCL, Ghafghazi S, Bolli R, and DeFilippis AP. Risk 
of E. coli Contamination in Non-Municipal Waters Consumed by Mennonites versus 
Other Rural Populations. The American Journal of Public Health, June 2014. 

 
In Preparation     
 
Amraotkar AR, Boman M, Nair R, Cambon AC, Rai SN, Bolli R, and DeFilippis AP. Sensory 

Integration in Individuals with Autism Spectrum Disorders Entering White versus Black 
Sensory Room. 

Cambon AC, Baumgartner KB, Brock GN, Cooper NGF, Wu D, and Rai SN.  
Properties of Adaptive Clinical Trial Signature Design in the Presence of Gene and Gene 
–Treatment Interaction.  

Cambon AC, Baumgartner KB, Brock GN, Cooper NGF, Wu D, and Rai SN.  
Estimating Design Parameters in the Presence of Gene and Gene -Treatment Interaction 
Using High-Throughput Informatics in Clinical Trials.  

 
5.  VOLUNTEER SERVICE 
 
Water and Health Development Engineer, Mennonite Central Committee, 1982-1985 – see #3 
above for more detail. 
 
GE Elfun Society – 1997-2003 – participated in numerous projects including Kentucky School 
for the Blind renovations, school tutoring, etc. 
 
Walk for Diabetes Fundraiser, Louisville, KY, 2000. 
 
Part of group to Eastern Kentucky (Appalachia) to provide needed home repairs for elderly 
residents, 2001. 
 
Tutored grade K-12 inner city in Math, English, Spelling (Here’s Life Inner City), 2001-2002. 
 
Taught English to Chinese Middle School Students in Hubei Province, China, Summer 2002. 
 
Lead volunteer group to gut houses in 9th ward and other hard hit areas in New Orleans, 2006.  
 
English tutoring for Burundi Refugees through Kentucky Refugee Services, 2007. 
 
Susan R Komen Race for the Cure, 10K Run, 2012. 
 
6.  TEACHING 
 
PHPH 610, Data and Statistics Management for Public Health using SPSS, Co-Instructor, Spring 
2013.  
 
PHST 724, Advanced Clinical Trials, Co-Instructor and Teaching Assistant, Spring  2013. 
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Graduate Level Course Lecture, Reliability Testing and Analysis, GE Appliances, Course 
approved for graduate credit in Engineering by University of Louisville, (2000-2002). 
 
One-week Reliability Analysis Course, Shanghai, China, and Seoul, Korea to GE Design 
Engineers, Quality Engineers, and Sourcing Managers (August, 2001). 
 
One-week Reliability Course to GE Supplier Engineers in Guangzhou, China (February, 2002). 
 
Co-developed and taught Short Course in Logistic Regression (GE Appliances, 2001). 
 
Developed and taught Accelerated Testing Short Course at GE Appliances (2000-2003). 
 
Taught English to Chinese Middle School Students in Hubei Province, China (Summer 2002). 
 
Monte Carlo Simulation short course instructor at GE Plastics (1998). 
 
40 hour course (Statistical Process Control), Graco Children’s Products (1991-1996). 
 
Short Course in Design of Experiments – Graco Children’s Products (1996). 
 
Basic health course for West African Village (1982-1985) – focus on water usage and health. 
 
7.  LANGUAGES 
 
English (fluent), French (spoke daily for 2 ½ years), Chinese Mandarin (Advanced), Italian 
(Intermediate), Birifor (West African Language – basic), Spanish (basic). 
 
 
8. STATISTICAL SOFTWARE PACKAGES/PROGRAMMING  
 
R      Partek 
SAS       East 
Bioconductor     NCSS/PASS 
dChip      Xemacs 
S-PLUS       Ingenuity  
SPSS      Excel  
nQuery Advisor     StatXact  
East       Weibull++  
ALTA      RG (Growth Models)  
Process Model (Simulation)   ProModel – (Simulation) 
Link Plus (Probability Matching)  Minitab 
GSEA/GSA (Pathway analysis software) Access  
Genetic/SNP Analysis Software packages DAVID 
 
8b.  TRAINING 
 
Bayesian Methods in Pharmaceutical Development, ASA Webinar, Biopharmaceutical Section, 
Instructors Karen Price, Mani Lakshminarayanan (November 2014) 
 
Genomic Clinical Trials and Predictive Medicine, Instructor-Richard Simon, One day short 
course at Joint Statistical Meeting, (August 2014). 
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Partek software for NextGen sequencing- Alignment, QA/QC, Downstream  Analysis, etc. 
(February 2013). 
 
National Institute of Environmental Health Sciences (NIEHS) SNPs Two-day Workshop, 
1/11/2008 (Training in Genetic/SNP Analysis) 
 
National Science Foundation (NSF) - Funded Short Course on Statistical Genetics and Statistical 
Genomics (1 Week, UAB, July, 2008) 
 
Joint Statistical Meeting (JSM) One-Day Short Course: Statistical Methods for Genetic Analysis, 
Kenneth Lange (August 2007). 
 
JSM One-Day Short Course: Probability Linkage (August 2007). 
 
8c.  COMMITTEES 
 
Software Committee- developed Access database to keep track of department software license 
statistics by person, by contract, company, etc.  
    
9.  CERTIFICATIONS   
 
American Society for Quality (ASQ) Certified Reliability Engineer since 1992. 
ASQ Certified Quality Engineer since 1991. 
ASQ Certified Quality Auditor since 1992. 
Certified Six Sigma Instructor (General Electric, 1998-2003). 
Certified Six Sigma Leader (General Electric, 2000-2003). 
Certified Statistical Process Control Instructor    (Quality Institute ~1994).  
GE Reliability Expert (1999-2003). 
GE Certified Reliability Practitioner (2000). 
Certified over 25 Reliability Practitioners (2000-2003). 
 
10.  PROFESSIONAL SOCIETIES 
 
American Statistical Association (Kentucky Chapter) since 1996. 
  
11.  EDITORIAL BOARD, COUNCILS AND COMMITTEES – SERVICE.  
 
Reviewer for Journal of Biometrics & Biostatistics, 2014 - present. 
American Statistical Association (ASA), Vice Chair District 2, Region 1, Council of Chapters 
Governing Board, 2012-2014. 
American Statistical Association, Kentucky Chapter Judge, duPont Manual High School Regional 
Science Fair, Louisville, KY, 2012. 
American Statistical Association, Kentucky Chapter Representative, 2004- 2012. 
American Statistical Association Judge, International Science and Engineering Fair, Louisville, 
KY, 2002. 
Chaired GE Appliances Reliability Practitioner (Survival Analysis) Best Practices monthly 
conference meetings 2000-2003. 
ASME (American Society for Mechanical Engineers) Student Chairman, Syracuse University, 
1982. 
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12.  AWARDS AND NAMED LECTURESHIPS 
 
Magna Cum Laude, Syracuse University, 1982. 
Outstanding Academic Achievement Award, Pennsylvania State University, 1998. 
GE Call Center Simulation Award, 1998. 
GE Instructor for Graduate Level Engineering Course Lecture in Reliability, 1999-2003. 
GE Certified Six Sigma Trainer, 1997-2003. 
GE Appliances Survival Analysis Expert, 2000-2003. 
GE Certified Six Sigma Black Belt, 2000-2003. 
GE Patent Award ($1,000) – Smoothing Algorithm for Dryer Sensor, 2001. 
GE Patent Award ($1,000) - Design of Internet Based Supplier Reliability System, 2001. 
ASA Judge, International Science and Engineering Fair, Louisville, Kentucky, 2002. 
US Patent 6,675,129 - Internet Based Supplier Process Reliability System, 2004. 
US Patent 7,013,578 - System and method for controlling a dryer appliance, 2006. 
 
13.  POSTERS/PRESENTATIONS/ABSTRACTS 
 
Classification of Clinical Outcomes Using High-Throughput Data, Alexander Cambon, Kathy B 
Baumgartner, Guy N Brock, Nigel GF Cooper, Dongfeng Wu, Shesh N Rai; Joint Statistical 
Meeting, Boston (August 2014). 
 
An Evaluation of a Simon 2-Stage Phase II Clinical Trial Design Incorporating Continuous 
Toxicity Monitoring, Herman Ray, D Kumar Srivastava, Alexander Cambon, Shesh N Rai 
(2014). 
 
Model Based Classifications of High-Throughput Data- Review, Design and Application to a 
Cancer Clinical Study, Alexander Cambon, Shesh N Rai; Joint Statistical Meeting, Montreal 
(July-August 2013). 
 
A review of classification methods which could be used to identify a subset of patients in a 
clinical study”, Alexander Cambon, Shesh N Rai; Joint Statistical Meeting, San Diego (July-
August 2012). 
 
Invited Guest Lecturer for Graduate Course Seminar Series PHST 602. Presentation entitled 
"Gene Set Analysis" (January 2009). 
 
Presentation of statistical analysis of bioinformatics project: “Response of Oral Cavity Cells to 
Cigarette Smoke Components”, Louisville, GEGIB-BBCB (February 2008). 
 
Poster Presentation: “Using Link Plus for Probability Matching in Kentucky’s Newborn 
Screening and Birth Defects Data”, Alexander Cambon, Sandy Fawbush, Charles Mundt, Joyce 
Robl; Maternal Child Health Conference, Atlanta (December 2007).  
 
Invited Guest Lecturer for Biostatistics Seminar (coordinated by Dr. Rempala) Presentation 
entitled "Analysis of a Probe Level Linear Mixed Model for Oligonucleotide Arrays" (March 
2007). 
 
Contributed Presentation: “Analysis of a Probe Level Linear Mixed Model for Oligonucleotide 
Arrays”, Alexander Cambon, Dr. Caryn Thompson, Dr. Brian Wattenberg, Joint Statistical 
Meeting (August 2006). 
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Poster Presentation: “Probe Level Patterns in Affymetrix Microarrays”, Alexander Cambon, 
Abdelnaby Khalyfa, Caryn Thompson, Nigel Cooper, Kentucky KBRIN conference, Land-
Between-the-Lakes (April 2006). 
 
Poster Presentation: “Pathway Analysis and Gene Signal Identification of Microarray Data for 
Apoptosis Induced Retinal Ganglion Cells”, Alexander Cambon, Abdelnaby Khalyfa, Caryn 
Thompson, Nigel Cooper; CHI Pathway Analysis Conference, San Francisco (February 2006). 
 
Invited Guest Lecturer for Graduate Course in Survival Analysis. Presentation entitled "Recurrent 
Events Analysis" (November 2004). 
 
An Application of Recurrent Events Analysis, Joint Statistical Meeting Proceedings, Toronto, 
Canada (Summer 2004). 
 
Invited Guest Lecturer for PHDA 602, University of Louisville; Survival Analysis Methods in 
Industry (2003). 
 
ASA/QPRC Northeast Meeting; “Using Monte Carlo simulation to Estimate an  Optimum Ratio 
of “Good” to “Bad” Parts in an Attribute Gage Study” (1998). 
 
“An Application of Design Experiments in Design of Baby Swings”, American Society for 
Quality, Reading, PA Chapter, ~1993. 
 


	Classification of clinical outcomes using high-throughput and clinical informatics.
	Recommended Citation

	tmp.1432837273.pdf.PVUL_

