201 research outputs found

    Path Control of a Rehabilitation Robot Using Virtual Tunnel and Adaptive Impedance Controller

    Get PDF
    Interactive control strategies have been widely used in many rehabilitation robotic devices. The distinctive feature of these strategies is that the patient can be encouraged to actively participant in the therapy program. In this paper, a novel adaptive impedance control method, which allows the patient to actively influence the robot movement trajectory, is presented. The control algorithm developed in this paper is capable of regulating the desired impedance according to the patient's actual deviation from the desired path and the dynamic relationship between patients' motion intention and the reference trajectory. A virtual tunnel surrounding the reference trajectory is designed to ensure the patient's range of motion is always physiologically meaningful. The proposed rehabilitation strategy encourages participants to make contributions to rehabilitation training task as much as possible, which may facilitate provoking motor plasticity and motor recovery. Preliminary experiments with several healthy subjects were conducted to evaluate the feasibility and effectiveness of this strategy. Experimental results demonstrated that subjects could successfully finish the tracking task assisted by robot with the proposed control algorithm

    Machine Learning in Robot Assisted Upper Limb Rehabilitation: A Focused Review

    Get PDF
    Robot-assisted rehabilitation, which can provide repetitive, intensive and high-precision physics training, has a positive influence on motor function recovery of stroke patients. Current robots need to be more intelligent and more reliable in clinical practice. Machine learning algorithms (MLAs) are able to learn from data and predict future unknown conditions, which is of benefit to improve the effectiveness of robot-assisted rehabilitation. In this paper, we conduct a focused review on machine learning-based methods for robot-assisted upper limb rehabilitation. Firstly, the current status of upper rehabilitation robots is presented. Then, we outline and analyze the designs and applications of MLAs for upper limb movement intention recognition, human-robot interaction control and quantitative assessment of motor function. Meanwhile, we discuss the future directions of MLAs-based robotic rehabilitation. This review article provides a summary of MLAs for robotic upper limb rehabilitation and contributes to the design and development of future advanced intelligent medical devices

    MECHANICAL IMPEDANCE OF ANKLE AS A FUNCTION OF ELECTROMYOGRAPHY SIGNALS OF LOWER LEG MUSCLES USING ARTIFICIAL NEURAL NETWORK

    Get PDF
    This paper reports on the feasibility of developing a model to describe the nonlinear relationship between the mechanical impedance of the human ankle within a specified range of frequency and the root mean square (RMS) value of the Electromyography (EMG) signals of the muscles of human ankle using Artificial Neural Network (ANN). A lower extremity rehabilitation robot — Anklebot was used to apply pseudo-random mechanical perturbations to the ankle and measure the angular displacement of the ankle to estimate the data of ankle mechanical impedance. Meanwhile, the surface EMG signals from the selected muscles were monitored and recorded using a Delsys Trigno® system. The final ANN models in this paper were created in two degrees of freedom — dorsiflexion-plantarflexion (DP) and inversioneversion (IE) at 3 different muscle activation levels. The results of analysis of the ANN model showed the feasibility of developing models with adequate accuracy and to define the mechanical impedance of the human ankle in terms of lower extremity muscles’ EMG statistical properties

    Systematic Review of Intelligent Algorithms in Gait Analysis and Prediction for Lower Limb Robotic Systems

    Get PDF
    The rate of development of robotic technologies has been meteoric, as a result of compounded advancements in hardware and software. Amongst these robotic technologies are active exoskeletons and orthoses, used in the assistive and rehabilitative fields. Artificial intelligence techniques are increasingly being utilised in gait analysis and prediction. This review paper systematically explores the current use of intelligent algorithms in gait analysis for robotic control, specifically the control of active lower limb exoskeletons and orthoses. Two databases, IEEE and Scopus, were screened for papers published between 1989 to May 2020. 41 papers met the eligibility criteria and were included in this review. 66.7% of the identified studies used classification models for the classification of gait phases and locomotion modes. Meanwhile, 33.3% implemented regression models for the estimation/prediction of kinematic parameters such as joint angles and trajectories, and kinetic parameters such as moments and torques. Deep learning algorithms have been deployed in ∼15% of the machine learning implementations. Other methodological parameters were reviewed, such as the sensor selection and the sample sizes used for training the models

    Robust iterative feedback tuning control of a compliant rehabilitation robot for repetitive ankle training

    Get PDF
    Robot-assisted rehabilitation offers benefits, such as repetitive, intensive, and task-specific training, as compared to traditional manual manipulation performed by physiotherapists. In this paper, a robust iterative feedback tuning (IFT) technique for repetitive training control of a compliant parallel ankle rehabilitation robot is presented. The robot employs four parallel intrinsically compliant pneumatic muscle actuators that mimic skeletal muscles for ankle's motion training. A multiple degrees-of-freedom normalized IFT technique is proposed to increase the controller robustness by obtaining an optimal value for the weighting factor and offering a method with learning capacity to achieve an optimum of the controller parameters. Experiments with human participants were conducted to investigate the robustness as well as to validate the performance of the proposed IFT technique. Results show that the normalized IFT scheme will achieve a better and better tracking performance during the robot repetitive control and provides more robustness to the system by adapting to various situations in robotic rehabilitation

    Biomechatronics: Harmonizing Mechatronic Systems with Human Beings

    Get PDF
    This eBook provides a comprehensive treatise on modern biomechatronic systems centred around human applications. A particular emphasis is given to exoskeleton designs for assistance and training with advanced interfaces in human-machine interaction. Some of these designs are validated with experimental results which the reader will find very informative as building-blocks for designing such systems. This eBook will be ideally suited to those researching in biomechatronic area with bio-feedback applications or those who are involved in high-end research on manmachine interfaces. This may also serve as a textbook for biomechatronic design at post-graduate level

    Deep learning for gait prediction: an application to exoskeletons for children with neurological disorders

    Get PDF
    Cerebral Palsy, a non-progressive neurological disorder, is a lifelong condition. While it has no cure, clinical intervention aims to minimise the impact of the disability on individuals' lives. Wearable robotic devices, like exoskeletons, have been rapidly advancing and proving to be effective in rehabilitating individuals with gait pathologies. The utilization of artificial intelligence (AI) algorithms in controlling exoskeletons, particularly at the supervisory level, has emerged as a valuable approach. These algorithms rely on input from onboard sensors to predict gait phase, user intention, or joint kinematics. Using AI to improve the control of robotic devices not only enhances human-robot interaction but also has the potential to improve user comfort and functional outcomes of rehabilitation, and reduce accidents and injuries. In this research study, a comprehensive systematic literature review is conducted, exploring the various applications of AI in lower-limb robotic control. This review focuses on methodological parameters such as sensor usage, training demographics, sample size, and types of models while identifying gaps in the existing literature. Building on the findings of the review, subsequent research leveraged the power of deep learning to predict gait trajectories for the application of rehabilitative exoskeleton control. This study addresses a gap in the existing literature by focusing on predicting pathological gait trajectories, which exhibit higher inter- and intra-subject variability compared to the gait of healthy individuals. The research focused on the gait of children with neurological disorders, particularly Cerebral Palsy, as they stand to benefit greatly from rehabilitative exoskeletons. State-of-the-art deep learning algorithms, including transformers, fully connected neural networks, convolutional neural networks, and long short-term memory networks, were implemented for gait trajectory prediction. This research presents findings on the performance of these models for short-term and long-term recursive predictions, the impact of varying input and output window sizes on prediction errors, the effect of adding variable levels of Gaussian noise, and the robustness of the models in predicting gait at speeds within and outside the speed range of the training set. Moreover, the research outlines a methodology for optimising the stability of long-term forecasts and provides a comparative analysis of gait trajectory forecasting for typically developing children and children with Cerebral Palsy. A novel approach to generating adaptive trajectories for children with Cerebral Palsy, which can serve as reference trajectories for position-controlled exoskeletons, is also presented

    Soft Computing Techniques and Their Applications in Intel-ligent Industrial Control Systems: A Survey

    Get PDF
    Soft computing involves a series of methods that are compatible with imprecise information and complex human cognition. In the face of industrial control problems, soft computing techniques show strong intelligence, robustness and cost-effectiveness. This study dedicates to providing a survey on soft computing techniques and their applications in industrial control systems. The methodologies of soft computing are mainly classified in terms of fuzzy logic, neural computing, and genetic algorithms. The challenges surrounding modern industrial control systems are summarized based on the difficulties in information acquisition, the difficulties in modeling control rules, the difficulties in control system optimization, and the requirements for robustness. Then, this study reviews soft-computing-related achievements that have been developed to tackle these challenges. Afterwards, we present a retrospect of practical industrial control applications in the fields including transportation, intelligent machines, process industry as well as energy engineering. Finally, future research directions are discussed from different perspectives. This study demonstrates that soft computing methods can endow industry control processes with many merits, thus having great application potential. It is hoped that this survey can serve as a reference and provide convenience for scholars and practitioners in the fields of industrial control and computer science

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field
    • …
    corecore