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ABSTRACT 

In medical field, ultrasound imaging is one of the imaging modalities that 

needs position tracking system (PTS) in enlarging field of view (FoV) of an image. 

The enlarged FoV will result easier scanning procedure, and produce more accurate 

and comprehensive results. To overcome the weakness of commercially available 

PTSs which suffer from interference and occlusion, many researchers proposed 

improved PTSs. However, the improved PTSs focused on the portability and 

compact design, neglecting the vertical scanning aspect which is also important in 

ultrasound imaging. Hence, this research presents the development of hybrid 

inertial-manipulator based PTS for 3-dimensional (3D) ultrasound imaging system 

which capable of measuring the horizontal and vertical scanning movements. The 

proposed PTS uses the combination of inertial measurement unit sensor and 

manipulator. The research involves design and evaluation processes for the PTS. 

Once the design process of the PTS is completed, forward kinematics is calculated 

using Denavit-Hartenberg conversion. The next step is to evaluate the accuracy and 

repeatability of the output of the designed PTS by comparing with five sets of 

reference trajectory of ABB robot. A comparison of the accuracy for the proposed 

PTS with three other available PTSs is done using the horizontal movement’s error. 

The experimental results showed high repeatability of position output reading of the 

designed PTS with standard deviation of 0.27 mm in all different movements and 

speeds. The proposed PTS is suitable to be used in ultrasound imaging as the error is 

less than 1.45 mm. Furthermore, the proposed PTS can measure the vertical 

scanning movement which is neglected in all the previous works, thus fulfilling the 

main objective of the research. 
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ABSTRAK 

Dalam bidang perubatan, pengimejan ultrasound adalah salah satu modaliti 

pengimejan yang memerlukan sistem pengesan kedudukan (PTS) bagi membesarkan 

medan penglihatan (FoV) imej. FoV yang dibesarkan akan menyebabkan prosedur 

imbasan lebih mudah dan menghasilkan keputusan yang lebih tepat dan menyeluruh. 

Bagi mengatasi kelemahan PTS komersial yang mengalami masalah gangguan dan 

halangan penglihatan, ramai penyelidik yang mengusulkan PTS diperbaik. Namun, 

PTS diperbaik memfokuskan unsur mudah-alih dan reka bentuk kompak, 

mengabaikan aspek imbasan menegak yang merupakan aspek penting dalam 

pengimejan ultrasound. Oleh itu, kajian ini membentangkan pembangunan PTS 

berdasarkan gabungan inertia-manipulator untuk pengimejan ultrasound 3-dimensi 

(3D) yang mampu melakukan pergerakan imbasan mendatar dan menegak. Bagi 

mencapai matlamat ini, PTS perlu direka bentuk dan kemudian dinilai. Setelah 

proses reka bentuk PTS selesai, kinematik hadapan dikira menggunakan kaedah 

penukaran Denavit-Hartenberg. Langkah seterusnya adalah untuk menilai ketepatan 

dan keterulangan output kedudukan PTS dengan membandingkan lima set trajektori 

rujukan robot ABB. Perbandingan ketepatan PTS yang dicadangkan dengan tiga 

PTS sedia ada dilakukan menggunakan ralat pergerakan mendatar. Keputusan 

eksperimen menunjukkan keterulangan yang tinggi dengan sisihan piawai 0.27 mm 

dari bacaan output kedudukan PTS yand direka bentuk dalam semua pergerakan dan 

kelajuan yang berbeza. Secara keseluruhan, PTS yang dicadangkan adalah sesuai 

untuk digunakan dalam pengimejan ultrasound kerana ralat yang dicatatkan kurang 

daripada 1.45 mm. Selain itu, PTS yang dicadangkan mampu mengukur pergerakan 

pengimbasan menegak yang diabaikan dalam semua PTS sebelumnya, dan 

memenuhi objektif utama penyelidikan. 
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CHAPTER 1  

INTRODUCTION 

1.1 Research Background 

Position tracking system (PTS) has been greatly developed for decades[1–7]. 

Its uses have confirmed enormous advantages in many fields, either stand alone for 

its own tracking purposes or for supporting other devices in data localization. By 

definition, the objective of a PTS is generally intended for object observation in term 

of location and movement recorded in an extent of time by measuring position and 

orientation in both virtual and real worlds, characterized by data acquisition, 

precision, working range and degree-of-freedom (DOF), and depending on the nature 

of the system and applications. With the capability in localizing specific position and 

identifying motion of an object, PTS has played a big role in many important 

applications, such as aeronautics and transport system  [8, 9], military[10, 11], 

telecommunication[12, 13], remote sensing[14], robotics and mechanical 

engineering[15, 16], biology and medicine[17, 18], and sports and entertainment[19, 

20]. 

Along with the vast development of sensors[21, 22] and computational 

system[23, 24], and with its high market demand in many applications, the PTS’s 

technology progression is nowadays growing tremendously. Various new PTSs have 

been released to the market triggering a great growth of new devices supported by 

PTSs. However, due to the need of technology suitability study with its application, 

not all PTSs can be directly applied. Defining the best technology must be confirmed 

by specifying the application details and the PTS’s technology based on 

standards[25], characteristics and purposes[26], and environment[27]. Sensor 

characteristics, such as type, accuracy, robustness, latency, and applicability, need to 
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be concurrently considered in determining a suitable PTS and matching them for 

certain purpose. 

PTS have also been commonly used in biology and medical fields, ranging 

from tracking human motion to assisting invasive procedure in combination with 

surgical instruments. In biology, the applications are mostly for supporting cellular 

imaging technology for miniscule object observation[17]. While in the medical field, 

the applications are much wider, including diagnostics [28, 29], image-guided 

navigation system for therapeutic, intervention and surgical assistance [30–32], and 

rehabilitation medicine [33–35]. 

Comparing to other imaging systems, ultrasound imaging is one of the 

imaging modalities which highly implements PTSs for its clinical applications, both 

non-invasively and invasively. The uses of ultrasound imaging are highly 

encouraging because of its non-radiation exposure, real-time, low-cost, high 

mobility, and ease of application in scores of clinical environments. Still, in spite of 

its handy size, ultrasound probe has some limitations in conducting diagnosis and 

treatments. The freehand uniqueness of the ultrasound probe enables the operator to 

sweep the ultrasound probe and grab the image based on the surface contour of the 

body and direct it to specific region of interest for thorough investigation. 

Consequently, freehand ultrasound imaging process is highly depending to skill of 

operator. Unlike skilled operators who can easily find the exact position of the object 

of interests, unskilled ones need to understand the anatomical structure of the 

scanned location and sweep much longer to reach the exact location and obtain the 

correct image. Such work is often time consuming and has higher error risks that 

may affect the diagnosis or treatment results[36–38]. 

Besides freehand complication, the narrow field of view of the ultrasound 

probe also causes difficulties in image visualization and interpretation as well as 

object localization. Such difficulties may also hamper accuracy in performing 

diagnosis and treatment. Additionally, these problems become more complicated in 

treatment monitoring when the ultrasound imaging is used in common with other 

imaging modalities with different characteristics, such as MRI, CT, and so on. 
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Therefore, an extended view technique is used to enlarge the field of view[39, 40]. 

With the advancement of PTSs and their possibilities to integrate with the ultrasound 

imaging system, field of view enlargement can be performed, resulting in an easier 

scanning procedure, with more accurate and comprehensive results. This progression 

has brought the ultrasound imaging system to become more accurate, interactive, 

multidimensional, and ubiquitous with other systems. 

As mentioned above, there are varieties of position tracking technologies 

developed until now, but not all of the PTSs can simply be used in ultrasound 

imaging. This is due to the limitation, advantages and disadvantages of each PTS 

which limits the compatibility with ultrasound imaging devices. The main objective 

of this research is to develop PTS for ultrasound imaging, specifically for 3D 

ultrasound imaging. Due to their disadvantages, the PTS will use neither of the 

currently available PTSs which are optical tracking system and electromagnetic 

tracking system. Instead, this research proposed a combination of inertial 

measurement unit (IMU) and manipulator as the PTS. 

1.2 Problem Statement 

There are two types of commercially available PTSs used to track the probe 

position for ultrasound imaging which are optical tracking system and 

electromagnetic tracking system[41, 42]. However, both PTSs suffers from some 

disadvantages such as occlusion problem [43] and distortion of magnetic field [43,  

44]. Due to these disadvantages, other PTSs that have been proposed by other 

researchers for the same motive. The proposed PTSs will be reviewed and their 

advantages and disadvantages will be highlighted in the next chapter. But, overall, all 

of the proposed PTSs focused on the portability and compact design which then 

limits their usage of the PTSs for only horizontal movements. In other words, the 

proposed PTSs for ultrasound imaging doesn’t measure the vertical movements. The 

vertical movements are useful for ultrasound imaging especially for spine scanning 

or pregnancy scanning and it will be discussed further detail in Chapter 2. Therefore, 
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a PTS for ultrasound imaging which also cover the vertical movement scanning is 

needed. 

1.3 Research Objectives 

The main objective of this research is to develop a PTS for 3-dimension (3D) 

ultrasound imaging system which capable of measuring the horizontal and vertical 

scanning movements. In order to achieve the main objective, several sub-objectives 

are highlighted below. 

 
The sub-objectives of the research are: 

I. To design and fabricate manipulator for the ultrasound probe attachment and 

PTS. 

II. To calculate the position of ultrasound probe using forward kinematics 

equation with Denavit-Hartenberg (DH) convention. 

III. To do experimental analysis of the fabricated PTS, using reference trajectory 

of ABB Robot. 

 

1.4 Scope of Work 

The followings are the scopes of the research: 

I. The design and fabrication of the manipulator will focus on the proof of 

concept to be used in ultrasound imaging environment. 

II. Experimental analysis are done in several motion paths based on the basic 

movements of the ultrasound scanning techniques. 
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1.5 Thesis Outline 

This thesis is organized as follows. There are 5 chapters in total. Chapter 1 

provides a brief introduction of PTS in general and then narrowed down to the PTS 

used in medical fields. The objectives and the problem statement of the research 

were also stated in this chapter. The scopes of works for this research were explained 

at the end of the chapter. 

Chapter 2 presents the literature review of the related works regarding the 

research topic. It starts with a discussion on the previous literature regarding PTS and 

ultrasound imaging. Types of the indoor PTS which is the focus of this research were 

presented in detail. Next, the ultrasound imaging system is presented by highlighting 

the needs for PTS in the field. At the end of the chapter, PTS for ultrasound imaging 

developed by previous researchers were discussed by taking into account their 

advantages and disadvantages. 

In Chapter 3, the step by step methodology approaches used throughout the 

research is presented. The approaches were done in order to achieve the objectives 

highlighted in Chapter 1. This covers the design of PTS, forward kinematic 

calculation, and lastly fabrication and experimentation. MATLAB software, 

Solidworks software, ABB Robot have all been used for simulations, evaluations and 

experimentations. Each part of the methodology was discussed in details in the 

chapter.  

Chapter 4 presents the results of all the simulations, evaluations and 

experimentations done in this research. This chapter covers the results of 

experimental works done using ABB Robot to evaluate the accuracy and consistency 

of the PTS. All the results were presented, discussed and summarized in this chapter. 

Chapter 5 summarized the findings of this research, thus recommending the 

future work that can be done to improve the research project. 
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