20,707 research outputs found

    Weighted Point Cloud Augmentation for Neural Network Training Data Class-Imbalance

    Get PDF
    Recent developments in the field of deep learning for 3D data have demonstrated promising potential for end-to-end learning directly from point clouds. However, many real-world point clouds contain a large class im-balance due to the natural class im-balance observed in nature. For example, a 3D scan of an urban environment will consist mostly of road and facade, whereas other objects such as poles will be under-represented. In this paper we address this issue by employing a weighted augmentation to increase classes that contain fewer points. By mitigating the class im-balance present in the data we demonstrate that a standard PointNet++ deep neural network can achieve higher performance at inference on validation data. This was observed as an increase of F1 score of 19% and 25% on two test benchmark datasets; ScanNet and Semantic3D respectively where no class im-balance pre-processing had been performed. Our networks performed better on both highly-represented and under-represented classes, which indicates that the network is learning more robust and meaningful features when the loss function is not overly exposed to only a few classes.Comment: 7 pages, 6 figures, submitted for ISPRS Geospatial Week conference 201

    Context-awareness for mobile sensing: a survey and future directions

    Get PDF
    The evolution of smartphones together with increasing computational power have empowered developers to create innovative context-aware applications for recognizing user related social and cognitive activities in any situation and at any location. The existence and awareness of the context provides the capability of being conscious of physical environments or situations around mobile device users. This allows network services to respond proactively and intelligently based on such awareness. The key idea behind context-aware applications is to encourage users to collect, analyze and share local sensory knowledge in the purpose for a large scale community use by creating a smart network. The desired network is capable of making autonomous logical decisions to actuate environmental objects, and also assist individuals. However, many open challenges remain, which are mostly arisen due to the middleware services provided in mobile devices have limited resources in terms of power, memory and bandwidth. Thus, it becomes critically important to study how the drawbacks can be elaborated and resolved, and at the same time better understand the opportunities for the research community to contribute to the context-awareness. To this end, this paper surveys the literature over the period of 1991-2014 from the emerging concepts to applications of context-awareness in mobile platforms by providing up-to-date research and future research directions. Moreover, it points out the challenges faced in this regard and enlighten them by proposing possible solutions

    PointASNL: Robust Point Clouds Processing using Nonlocal Neural Networks with Adaptive Sampling

    Full text link
    Raw point clouds data inevitably contains outliers or noise through acquisition from 3D sensors or reconstruction algorithms. In this paper, we present a novel end-to-end network for robust point clouds processing, named PointASNL, which can deal with point clouds with noise effectively. The key component in our approach is the adaptive sampling (AS) module. It first re-weights the neighbors around the initial sampled points from farthest point sampling (FPS), and then adaptively adjusts the sampled points beyond the entire point cloud. Our AS module can not only benefit the feature learning of point clouds, but also ease the biased effect of outliers. To further capture the neighbor and long-range dependencies of the sampled point, we proposed a local-nonlocal (L-NL) module inspired by the nonlocal operation. Such L-NL module enables the learning process insensitive to noise. Extensive experiments verify the robustness and superiority of our approach in point clouds processing tasks regardless of synthesis data, indoor data, and outdoor data with or without noise. Specifically, PointASNL achieves state-of-the-art robust performance for classification and segmentation tasks on all datasets, and significantly outperforms previous methods on real-world outdoor SemanticKITTI dataset with considerate noise. Our code is released through https://github.com/yanx27/PointASNL.Comment: To appear in CVPR 2020. Also seen in http://kaldir.vc.in.tum.de/scannet_benchmark

    Adaptive transfer functions: improved multiresolution visualization of medical models

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00371-016-1253-9Medical datasets are continuously increasing in size. Although larger models may be available for certain research purposes, in the common clinical practice the models are usually of up to 512x512x2000 voxels. These resolutions exceed the capabilities of conventional GPUs, the ones usually found in the medical doctors’ desktop PCs. Commercial solutions typically reduce the data by downsampling the dataset iteratively until it fits the available target specifications. The data loss reduces the visualization quality and this is not commonly compensated with other actions that might alleviate its effects. In this paper, we propose adaptive transfer functions, an algorithm that improves the transfer function in downsampled multiresolution models so that the quality of renderings is highly improved. The technique is simple and lightweight, and it is suitable, not only to visualize huge models that would not fit in a GPU, but also to render not-so-large models in mobile GPUs, which are less capable than their desktop counterparts. Moreover, it can also be used to accelerate rendering frame rates using lower levels of the multiresolution hierarchy while still maintaining high-quality results in a focus and context approach. We also show an evaluation of these results based on perceptual metrics.Peer ReviewedPostprint (author's final draft

    Self-organizing nonlinear output (SONO): A neural network suitable for cloud patch-based rainfall estimation at small scales

    Get PDF
    Accurate measurement of rainfall distribution at various spatial and temporal scales is crucial for hydrological modeling and water resources management. In the literature of satellite rainfall estimation, many efforts have been made to calibrate a statistical relationship (including threshold, linear, or nonlinear) between cloud infrared (IR) brightness temperatures and surface rain rates (RR). In this study, an automated neural network for cloud patch-based rainfall estimation, entitled self-organizing nonlinear output (SONO) model, is developed to account for the high variability of cloud-rainfall processes at geostationary scales (i.e., 4 km and every 30 min). Instead of calibrating only one IR-RR function for all clouds the SONO classifies varied cloud patches into different clusters and then searches a nonlinear IR-RR mapping function for each cluster. This designed feature enables SONO to generate various rain rates at a given brightness temperature and variable rain/no-rain IR thresholds for different cloud types, which overcomes the one-to-one mapping limitation of a single statistical IR-RR function for the full spectrum of cloud-rainfall conditions. In addition, the computational and modeling strengths of neural network enable SONO to cope with the nonlinearity of cloud-rainfall relationships by fusing multisource data sets. Evaluated at various temporal and spatial scales, SONO shows improvements of estimation accuracy, both in rain intensity and in detection of rain/no-rain pixels. Further examination of the SONO adaptability demonstrates its potentiality as an operational satellite rainfall estimation system that uses the passive microwave rainfall observations from low-orbiting satellites to adjust the IR-based rainfall estimates at the resolution of geostationary satellites. Copyright 2005 by the American Geophysical Union
    corecore