651 research outputs found

    Adaptive Wireless Biomedical Capsule Localization and Tracking

    Get PDF
    Wireless capsule endoscopy systems have been shown as a gold step to develop future wireless biomedical multitask robotic capsules, which will be utilized in micro surgery, drug delivery, biopsy and multitasks of the endoscopy. In such wireless capsule endoscopy systems, one of the most challenging problems is accurate localization and tracking of the capsule inside the human body. In this thesis, we focus on robotic biomedical capsule localization and tracking using range measurements via electromagetic wave and magnetic strength based sensors. First, a literature review of existing localization techniques with their merits and limitations is presented. Then, a novel geometric environmental coefficient estimation technique is introduced for time of flight (TOF) and received signal strength (RSS) based range measurement. Utilizing the proposed environmental coefficient estimation technique, a 3D wireless biomedical capsule localization and tracking scheme is designed based on a discrete adaptive recursive least square algorithm with forgetting factor. The comparison between localization with novel coefficient estimation technique and localization with known coefficient is provided to demonstrate the proposed technique’s efficiency. Later, as an alternative to TOF and RSS based sensors, use of magnetic strength based sensors is considered. We analyze and demonstrate the performance of the proposed techniques and designs in various scenarios simulated in Matlab/Simulink environment

    Least-square based recursive optimization for distance-based source localization

    Full text link
    In this paper we study the problem of driving an agent to an unknown source whose location is estimated in real-time by a recursive optimization algorithm. The optimization criterion is subject to a least-square cost function constructed from the distance measurements to the target combined with the agent's self-odometry. In this work, two important issues concerning real world application are directly addressed, which is a discrete-time recursive algorithm for concurrent control and estimation, and consideration for input saturation. It is proven that with proper choices of the system's parameters, stability of all system states, including on-board estimator variables and the agent-target relative position can be achieved. The convergence of the agent's position to the target is also investigated via numerical simulation

    Use of a 3-D Wireless Power Transfer Technique as a Method for Capsule Localization

    Get PDF
    Capsule endoscopy has been heralded as a technological milestone in the diagnosis and therapeutics of gastrointestinal (GI) pathologies. The location and position of the capsule within the GI tract are important information for subsequent surgical intervention or local drug delivery. Accurate information of capsule location is therefore required during endoscopy. Although radio frequency (RF)-based, magnetic tracking and video localization have been investigated in the past, the complexity of those systems and potential inaccuracy in the localization data necessitate the scope for further research. This article proposes the dual use of a wireless power transfer (WPT) configuration as a method to enable the determination of the location of an endoscopic capsule. Measurements conducted on a homogeneous agar-based liquid phantom predict a maximum error of 12% between the calculated and measured trajectories of the capsule in a working volume of 100 mm ×100\times 100 mm ×100\times 100 mm

    A Survey on Subsurface Signal Propagation

    Get PDF
    Wireless Underground Communication (WUC) is an emerging field that is being developed continuously. It provides secure mechanism of deploying nodes underground which shields them from any outside temperament or harsh weather conditions. This paper works towards introducing WUC and give a detail overview of WUC. It discusses system architecture of WUC along with the anatomy of the underground sensor motes deployed in WUC systems. It also compares Over-the-Air and Underground and highlights the major differences between the both type of channels. Since, UG communication is an evolving field, this paper also presents the evolution of the field along with the components and example UG wireless communication systems. Finally, the current research challenges of the system are presented for further improvement of the WUCs

    Hessian Estimation Based Adaptive and Cooperative Extremum Localization

    Get PDF
    The thesis is on Hessian estimation based adaptive and cooperative extremum localization via a single mobile sensory agent as well as a network of multiple such agents. First, we develop a continuous time adaptive extremum localization of an arbitrary quadratic function F(·) based on Hessian estimation, using the measured signal intensity via a single mobile sensory agent. A gradient based adaptive Hessian parameter estimation and extremum localization scheme is developed considering a linear parametric model of field variations. Next, we extend the proposed single agent based Hessian estimation and extremum localization scheme to consensus based cooperative distributed scheme to be implemented by a network of such sensory agents.For the networked multi-agent case, a consensus term is added to the base adaptive laws to obtain enhanced estimation cooperatively. Stability and convergence analysis of the proposed scheme is studied, establishing asymptotic convergence of the Hessian parameters and location estimates to their true values robustly, provided that the motion of agent(s) satisfies certain persistence of excitation(PE) conditions. Furthermore, we show that for a network of connected agents, the PE requirements can be distributed to the agents so that the requirement on each agent is more relaxed and feasible. Later, we design an adaptive motion control scheme for steering a mobile sensory agent in 2D toward the source of a signal field F(·) using the signal intensity the agent continuously measures at its current location. The proposed adaptive control design is based on the Hessian estimation based adaptive extremum localization. Results are displayed to verify that the proposed scheme is stable, provides asymptotic convergence of the Hessian parameter and extremum location estimates to their true values and the agent location to the source location, robustly to signal measurement noises

    Wide-Scale Small Unmanned Aircraft System Access to the National Airspace System

    Get PDF
    Expected revisions of federal policies and regulations for the operation and certification of small unmanned aircraft systems (sUAS) are anticipated to significantly increase the volume of traffic in the National Airspace System (NAS). By investigating critical needs of regulatory compliance and safety, as well as new advancements, it may be possible to identify strategies to address the most pressing concerns of sUAS integration. Findings and recommendations from this research are presented to highlight implications and possible solutions to urgent needs of UAS stakehold-ers, including industry, government, and academia
    • …
    corecore