552 research outputs found

    Extensive Analysis on Generation and Consensus Mechanisms of Clustering Ensemble: A Survey

    Get PDF
    Data analysis plays a prominent role in interpreting various phenomena. Data mining is the process to hypothesize useful knowledge from the extensive data. Based upon the classical statistical prototypes the data can be exploited beyond the storage and management of the data. Cluster analysis a primary investigation with little or no prior knowledge, consists of research and development across a wide variety of communities. Cluster ensembles are melange of individual solutions obtained from different clusterings to produce final quality clustering which is required in wider applications. The method arises in the perspective of increasing robustness, scalability and accuracy. This paper gives a brief overview of the generation methods and consensus functions included in cluster ensemble. The survey is to analyze the various techniques and cluster ensemble methods

    Deep Domain Fusion for Adaptive Image Classification

    Get PDF
    abstract: Endowing machines with the ability to understand digital images is a critical task for a host of high-impact applications, including pathology detection in radiographic imaging, autonomous vehicles, and assistive technology for the visually impaired. Computer vision systems rely on large corpora of annotated data in order to train task-specific visual recognition models. Despite significant advances made over the past decade, the fact remains collecting and annotating the data needed to successfully train a model is a prohibitively expensive endeavor. Moreover, these models are prone to rapid performance degradation when applied to data sampled from a different domain. Recent works in the development of deep adaptation networks seek to overcome these challenges by facilitating transfer learning between source and target domains. In parallel, the unification of dominant semi-supervised learning techniques has illustrated unprecedented potential for utilizing unlabeled data to train classification models in defiance of discouragingly meager sets of annotated data. In this thesis, a novel domain adaptation algorithm -- Domain Adaptive Fusion (DAF) -- is proposed, which encourages a domain-invariant linear relationship between the pixel-space of different domains and the prediction-space while being trained under a domain adversarial signal. The thoughtful combination of key components in unsupervised domain adaptation and semi-supervised learning enable DAF to effectively bridge the gap between source and target domains. Experiments performed on computer vision benchmark datasets for domain adaptation endorse the efficacy of this hybrid approach, outperforming all of the baseline architectures on most of the transfer tasks.Dissertation/ThesisMasters Thesis Computer Science 201

    Learning with Limited Annotations: A Survey on Deep Semi-Supervised Learning for Medical Image Segmentation

    Full text link
    Medical image segmentation is a fundamental and critical step in many image-guided clinical approaches. Recent success of deep learning-based segmentation methods usually relies on a large amount of labeled data, which is particularly difficult and costly to obtain especially in the medical imaging domain where only experts can provide reliable and accurate annotations. Semi-supervised learning has emerged as an appealing strategy and been widely applied to medical image segmentation tasks to train deep models with limited annotations. In this paper, we present a comprehensive review of recently proposed semi-supervised learning methods for medical image segmentation and summarized both the technical novelties and empirical results. Furthermore, we analyze and discuss the limitations and several unsolved problems of existing approaches. We hope this review could inspire the research community to explore solutions for this challenge and further promote the developments in medical image segmentation field

    A Survey on Deep Semi-supervised Learning

    Full text link
    Deep semi-supervised learning is a fast-growing field with a range of practical applications. This paper provides a comprehensive survey on both fundamentals and recent advances in deep semi-supervised learning methods from model design perspectives and unsupervised loss functions. We first present a taxonomy for deep semi-supervised learning that categorizes existing methods, including deep generative methods, consistency regularization methods, graph-based methods, pseudo-labeling methods, and hybrid methods. Then we offer a detailed comparison of these methods in terms of the type of losses, contributions, and architecture differences. In addition to the past few years' progress, we further discuss some shortcomings of existing methods and provide some tentative heuristic solutions for solving these open problems.Comment: 24 pages, 6 figure

    Semi-Supervised and Unsupervised Deep Visual Learning: A Survey

    Get PDF
    State-of-the-art deep learning models are often trained with a large amountof costly labeled training data. However, requiring exhaustive manualannotations may degrade the model's generalizability in the limited-labelregime. Semi-supervised learning and unsupervised learning offer promisingparadigms to learn from an abundance of unlabeled visual data. Recent progressin these paradigms has indicated the strong benefits of leveraging unlabeleddata to improve model generalization and provide better model initialization.In this survey, we review the recent advanced deep learning algorithms onsemi-supervised learning (SSL) and unsupervised learning (UL) for visualrecognition from a unified perspective. To offer a holistic understanding ofthe state-of-the-art in these areas, we propose a unified taxonomy. Wecategorize existing representative SSL and UL with comprehensive and insightfulanalysis to highlight their design rationales in different learning scenariosand applications in different computer vision tasks. Lastly, we discuss theemerging trends and open challenges in SSL and UL to shed light on futurecritical research directions.<br

    A Comprehensive Survey on Test-Time Adaptation under Distribution Shifts

    Full text link
    Machine learning methods strive to acquire a robust model during training that can generalize well to test samples, even under distribution shifts. However, these methods often suffer from a performance drop due to unknown test distributions. Test-time adaptation (TTA), an emerging paradigm, has the potential to adapt a pre-trained model to unlabeled data during testing, before making predictions. Recent progress in this paradigm highlights the significant benefits of utilizing unlabeled data for training self-adapted models prior to inference. In this survey, we divide TTA into several distinct categories, namely, test-time (source-free) domain adaptation, test-time batch adaptation, online test-time adaptation, and test-time prior adaptation. For each category, we provide a comprehensive taxonomy of advanced algorithms, followed by a discussion of different learning scenarios. Furthermore, we analyze relevant applications of TTA and discuss open challenges and promising areas for future research. A comprehensive list of TTA methods can be found at \url{https://github.com/tim-learn/awesome-test-time-adaptation}.Comment: Discussions, comments, and questions are all welcomed in \url{https://github.com/tim-learn/awesome-test-time-adaptation
    • …
    corecore