4 research outputs found

    Adaptive ensemble learning with confidence bounds for personalized diagnosis

    Get PDF
    With the advances in the field of medical informatics, automated clinical decision support systems are becoming the de facto standard in personalized diagnosis. In order to establish high accuracy and confidence in personalized diagnosis, massive amounts of distributed, heterogeneous, correlated and high-dimensional patient data from different sources such as wearable sensors, mobile applications, Electronic Health Record (EHR) databases etc. need to be processed. This requires learning both locally and globally due to privacy constraints and/or distributed nature of the multimodal medical data. In the last decade, a large number of meta-learning techniques have been proposed in which local learners make online predictions based on their locally-collected data instances, and feed these predictions to an ensemble learner, which fuses them and issues a global prediction. However, most of these works do not provide performance guarantees or, when they do, these guarantees are asymptotic. None of these existing works provide confidence estimates about the issued predictions or rate of learning guarantees for the ensemble learner. In this paper, we provide a systematic ensemble learning method called Hedged Bandits, which comes with both long run (asymptotic) and short run (rate of learning) performance guarantees. Moreover, we show that our proposed method outperforms all existing ensemble learning techniques, even in the presence of concept drift

    ConfidentCare: A Clinical Decision Support System for Personalized Breast Cancer Screening

    Full text link
    Breast cancer screening policies attempt to achieve timely diagnosis by the regular screening of apparently healthy women. Various clinical decisions are needed to manage the screening process; those include: selecting the screening tests for a woman to take, interpreting the test outcomes, and deciding whether or not a woman should be referred to a diagnostic test. Such decisions are currently guided by clinical practice guidelines (CPGs), which represent a one-size-fits-all approach that are designed to work well on average for a population, without guaranteeing that it will work well uniformly over that population. Since the risks and benefits of screening are functions of each patients features, personalized screening policies that are tailored to the features of individuals are needed in order to ensure that the right tests are recommended to the right woman. In order to address this issue, we present ConfidentCare: a computer-aided clinical decision support system that learns a personalized screening policy from the electronic health record (EHR) data. ConfidentCare operates by recognizing clusters of similar patients, and learning the best screening policy to adopt for each cluster. A cluster of patients is a set of patients with similar features (e.g. age, breast density, family history, etc.), and the screening policy is a set of guidelines on what actions to recommend for a woman given her features and screening test scores. ConfidentCare algorithm ensures that the policy adopted for every cluster of patients satisfies a predefined accuracy requirement with a high level of confidence. We show that our algorithm outperforms the current CPGs in terms of cost-efficiency and false positive rates
    corecore