285 research outputs found

    A fast immersed boundary method for external incompressible viscous flows using lattice Green's functions

    Get PDF
    A new parallel, computationally efficient immersed boundary method for solving three-dimensional, viscous, incompressible flows on unbounded domains is presented. Immersed surfaces with prescribed motions are generated using the interpolation and regularization operators obtained from the discrete delta function approach of the original (Peskin's) immersed boundary method. Unlike Peskin's method, boundary forces are regarded as Lagrange multipliers that are used to satisfy the no-slip condition. The incompressible Navier-Stokes equations are discretized on an unbounded staggered Cartesian grid and are solved in a finite number of operations using lattice Green's function techniques. These techniques are used to automatically enforce the natural free-space boundary conditions and to implement a novel block-wise adaptive grid that significantly reduces the run-time cost of solutions by limiting operations to grid cells in the immediate vicinity and near-wake region of the immersed surface. These techniques also enable the construction of practical discrete viscous integrating factors that are used in combination with specialized half-explicit Runge-Kutta schemes to accurately and efficiently solve the differential algebraic equations describing the discrete momentum equation, incompressibility constraint, and no-slip constraint. Linear systems of equations resulting from the time integration scheme are efficiently solved using an approximation-free nested projection technique. The algebraic properties of the discrete operators are used to reduce projection steps to simple discrete elliptic problems, e.g. discrete Poisson problems, that are compatible with recent parallel fast multipole methods for difference equations. Numerical experiments on low-aspect-ratio flat plates and spheres at Reynolds numbers up to 3,700 are used to verify the accuracy and physical fidelity of the formulation.Comment: 32 pages, 9 figures; preprint submitted to Journal of Computational Physic

    A parallel fast multipole method for elliptic difference equations

    Get PDF
    A new fast multipole formulation for solving elliptic difference equations on unbounded domains and its parallel implementation are presented. These difference equations can arise directly in the description of physical systems, e.g. crystal structures, or indirectly through the discretization of PDEs. In the analog to solving continuous inhomogeneous differential equations using Green's functions, the proposed method uses the fundamental solution of the discrete operator on an infinite grid, or lattice Green's function. Fast solutions O(N)O(N) are achieved by using a kernel-independent interpolation-based fast multipole method. Unlike other fast multipole algorithms, our approach exploits the regularity of the underlying Cartesian grid and the efficiency of FFTs to reduce the computation time. Our parallel implementation allows communications and computations to be overlapped and requires minimal global synchronization. The accuracy, efficiency, and parallel performance of the method are demonstrated through numerical experiments on the discrete 3D Poisson equation

    Multiscale and High-Dimensional Problems

    Get PDF
    High-dimensional problems appear naturally in various scientific areas. Two primary examples are PDEs describing complex processes in computational chemistry and physics, and stochastic/ parameter-dependent PDEs arising in uncertainty quantification and optimal control. Other highly visible examples are big data analysis including regression and classification which typically encounters high-dimensional data as input and/or output. High dimensional problems cannot be solved by traditional numerical techniques, because of the so-called curse of dimensionality. Rather, they require the development of novel theoretical and computational approaches to make them tractable and to capture fine resolutions and relevant features. Paradoxically, increasing computational power may even serve to heighten this demand, since the wealth of new computational data itself becomes a major obstruction. Extracting essential information from complex structures and developing rigorous models to quantify the quality of information in a high dimensional setting constitute challenging tasks from both theoretical and numerical perspective. The last decade has seen the emergence of several new computational methodologies which address the obstacles to solving high dimensional problems. These include adaptive methods based on mesh refinement or sparsity, random forests, model reduction, compressed sensing, sparse grid and hyperbolic wavelet approximations, and various new tensor structures. Their common features are the nonlinearity of the solution method that prioritize variables and separate solution characteristics living on different scales. These methods have already drastically advanced the frontiers of computability for certain problem classes. This workshop proposed to deepen the understanding of the underlying mathematical concepts that drive this new evolution of computational methods and to promote the exchange of ideas emerging in various disciplines about how to treat multiscale and high-dimensional problems

    A survey of Trefftz methods for the Helmholtz equation

    Get PDF
    Trefftz methods are finite element-type schemes whose test and trial functions are (locally) solutions of the targeted differential equation. They are particularly popular for time-harmonic wave problems, as their trial spaces contain oscillating basis functions and may achieve better approximation properties than classical piecewise-polynomial spaces. We review the construction and properties of several Trefftz variational formulations developed for the Helmholtz equation, including least squares, discontinuous Galerkin, ultra weak variational formulation, variational theory of complex rays and wave based methods. The most common discrete Trefftz spaces used for this equation employ generalised harmonic polynomials (circular and spherical waves), plane and evanescent waves, fundamental solutions and multipoles as basis functions; we describe theoretical and computational aspects of these spaces, focusing in particular on their approximation properties. One of the most promising, but not yet well developed, features of Trefftz methods is the use of adaptivity in the choice of the propagation directions for the basis functions. The main difficulties encountered in the implementation are the assembly and the ill-conditioning of linear systems, we briefly survey some strategies that have been proposed to cope with these problems.Comment: 41 pages, 2 figures, to appear as a chapter in Springer Lecture Notes in Computational Science and Engineering. Differences from v1: added a few sentences in Sections 2.1, 2.2.2 and 2.3.1; inserted small correction

    Efficient Methods for Multidimensional Global Polynomial Approximation with Applications to Random PDEs

    Get PDF
    In this work, we consider several ways to overcome the challenges associated with polynomial approximation and integration of smooth functions depending on a large number of inputs. We are motivated by the problem of forward uncertainty quantification (UQ), whereby inputs to mathematical models are considered as random variables. With limited resources, finding more efficient and accurate ways to approximate the multidimensional solution to the UQ problem is of crucial importance, due to the “curse of dimensionality” and the cost of solving the underlying deterministic problem. The first way we overcome the complexity issue is by exploiting the structure of the approximation schemes used to solve the random partial differential equations (PDE), thereby significantly reducing the overall cost of the approximation. We do this first using multilevel approximations in the physical variables, and second by exploiting the hierarchy of nested sparse grids in the random parameter space. With these algorithmic advances, we provably decrease the complexity of collocation methods for solving random PDE problems. The second major theme in this work is the choice of efficient points for multidimensional interpolation and interpolatory quadrature. A major consideration in interpolation in multiple dimensions is the balance between stability, i.e., the Lebesgue constant of the interpolant, and the granularity of the approximation, e.g., the ability to choose an arbitrary number of interpolation points or to adaptively refine the grid. For these reasons, the Leja points are a popular choice for approximation on both bounded and unbounded domains. Mirroring the best-known results for interpolation on compact domains, we show that Leja points, defined for weighted interpolation on R, have a Lebesgue constant which grows subexponentially in the number of interpolation nodes. Regarding multidimensional quadratures, we show how certain new rules, generated from conformal mappings of classical interpolatory rules, can be used to increase the efficiency in approximating multidimensional integrals. Specifically, we show that the convergence rate for the novel mapped sparse grid interpolatory quadratures is improved by a factor that is exponential in the dimension of the underlying integral

    Schnelle Löser für partielle Differentialgleichungen

    Get PDF
    The workshop Schnelle Löser für partielle Differentialgleichungen, organised by Randolph E. Bank (La Jolla), Wolfgang Hackbusch(Leipzig), Gabriel Wittum (Heidelberg) was held May 22nd - May 28th, 2005. This meeting was well attended by 47 participants with broad geographic representation from 9 countries and 3 continents. This workshop was a nice blend of researchers with various backgrounds

    Geometric partial differential equations: Theory, numerics and applications

    Get PDF
    This workshop concentrated on partial differential equations involving stationary and evolving surfaces in which geometric quantities play a major role. Mutual interest in this emerging field stimulated the interaction between analysis, numerical solution, and applications
    corecore