7 research outputs found

    Adaptive Compression and Joint Detection for Fronthaul Uplinks in Cloud Radio Access Networks

    Get PDF
    Cloud radio access network (C-RAN) has recently attracted much attention as a promising architecture for future mobile networks to sustain the exponential growth of data rate. In C-RAN, one data processing center or baseband unit (BBU) communicates with users via distributed remote radio heads (RRHs), which are connected to the BBU via high capacity, low latency fronthaul links. In this paper, we study the compression on fron- thaul uplinks and propose a joint decompression algorithm at the BBU. The central premise behind the proposed algorithm is to ex- ploit the correlation between RRHs. Our contribution is threefold. First, we propose a joint decompression and detection (JDD) algorithm which jointly performs decompressing and detecting. The JDD algorithm takes into consideration both the fading and compression effect in a single decoding step. Second, block error rate (BLER) of the proposed algorithm is analyzed in closed-form by using pair-wise error probability analysis. Third, based on the analyzed BLER, we propose adaptive compression schemes subject to quality of service (QoS) constraints to minimize the fronthaul transmission rate while satisfying the pre-defined target QoS. As a dual problem, we also propose a scheme to minimize the signal distortion subject to fronthaul rate constraint. Numerical re- sults demonstrate that the proposed adaptive compression schemes can achieve a compression ratio of 300% in experimental setups

    Adaptive Compression and Joint Detection for Fronthaul Uplinks in Cloud Radio Access Networks

    Full text link

    A FEASIBILITY STUDY ON C-RAN

    Get PDF
    Now a days the number of users of mobile phone are increasing exponentially, so it will cause jamming in the network  and require  large bandwidth So among promising technology candidates to overcome this problem, cloud radio access network (C-RAN) used.C-RAN, having one baseband unit (BBU) communicates with users through distributed Remote Radio Heads (RRHs) .RRH  are connected to the BBU via high capability, low latency fronthaul links and performs soft relaying. The architecture of C-RAN imposes a shortage of fronthaul bandwidth because raw I/Q  samples are exchanged between the RRHs and the BBU.In BBU different algorithms are used to improve the capacity,joint decompression and decoding(JDD) and wynerziv coding

    Understanding the Computational Requirements of Virtualized Baseband Units using a Programmable Cloud Radio Access Network Testbed

    Full text link
    Cloud Radio Access Network (C-RAN) is emerging as a transformative architecture for the next generation of mobile cellular networks. In C-RAN, the Baseband Unit (BBU) is decoupled from the Base Station (BS) and consolidated in a centralized processing center. While the potential benefits of C-RAN have been studied extensively from the theoretical perspective, there are only a few works that address the system implementation issues and characterize the computational requirements of the virtualized BBU. In this paper, a programmable C-RAN testbed is presented where the BBU is virtualized using the OpenAirInterface (OAI) software platform, and the eNodeB and User Equipment (UEs) are implemented using USRP boards. Extensive experiments have been performed in a FDD downlink LTE emulation system to characterize the performance and computing resource consumption of the BBU under various conditions. It is shown that the processing time and CPU utilization of the BBU increase with the channel resources and with the Modulation and Coding Scheme (MCS) index, and that the CPU utilization percentage can be well approximated as a linear increasing function of the maximum downlink data rate. These results provide real-world insights into the characteristics of the BBU in terms of computing resource and power consumption, which may serve as inputs for the design of efficient resource-provisioning and allocation strategies in C-RAN systems.Comment: In Proceedings of the IEEE International Conference on Autonomic Computing (ICAC), July 201

    Power Optimization With BLER Constraint for Wireless Fronthauls in C-RAN

    Get PDF
    Cloud radio access network (C-RAN) is a novel architecture for future mobile networks to sustain the exponential traffic growth thanks to the exploitation of centralized processing. In C-RAN, one data processing center or baseband unit (BBU) communicates with users via distributed remote radio heads (RRHs), which are connected to the BBU via high capacity, low latency fronthaul links. In this letter, we study C-RAN with wireless fronthauls due to their flexibility in deployment and management. First, a tight upper bound of the system block error rate (BLER) is derived in closed-form expression via union bound analysis. Based on the derived bound, adaptive transmission schemes are proposed. Particularly, two practical power optimizations based on the BLER and pair-wise error probability (PEP) are proposed to minimize the consumed energy at the RRHs while satisfying the predefined quality of service (QoS) constraint. The premise of the proposed schemes originates from practical scenarios where most applications tolerate a certain QoS, e.g., a nonzero BLER. The effectiveness of the proposed schemes is demonstrated via intensive simulations

    Adaptive Cloud Radio Access Networks: Compression and Optimization

    Get PDF
    Future mobile networks are facing with exponential data growth due to the proliferation of diverse mobile equipment and data-hungry applications. Among promising technology candidates to overcome this problem, cloud radio access network (CRAN) has received much attention. In this work, we investigate the design of fronthaul in C-RAN uplink by focusing on the compression and optimization in fronthaul uplinks based on the statistics of wireless fading channels. First, we derive the system block error rate (BLER) under Rayleigh fading channels. In particular, upper and lower bounds of the BLER union bound are obtained in closed-form. From these bounds, we gain insight in terms of diversity order and limits of the BLER. Next, we propose adaptive compression schemes to minimize the fronthaul transmission rate subject to a BLER constraint. Furthermore, a fronthaul rate allocation is proposed to minimize the system BLER. It is shown that the uniform rate allocation approaches the optimal scheme as the total fronthauls’ bandwidth increases. Lastly, numerical results are presented to demonstrate the effectiveness of our proposed optimizations

    Adaptive Cloud Radio Access Networks: Compression and Optimization

    Full text link
    corecore