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Abstract—Cloud radio access network (C-RAN) has recently
attracted much attention as a promising architecture for future
mobile networks to sustain the exponential growth of data rate. In
C-RAN, one data processing center or baseband unit (BBU) com-
municates with users via distributed remote radio heads (RRHs),
which are connected to the BBU via high capacity, low latency
fronthaul links. In this paper, we study the compression on fron-
thaul uplinks and propose a joint decompression algorithm at the
BBU. The central premise behind the proposed algorithm is to ex-
ploit the correlation between RRHs. Our contribution is threefold.
First, we propose a joint decompression and detection (JDD)
algorithm which jointly performs decompressing and detecting.
The JDD algorithm takes into consideration both the fading and
compression effect in a single decoding step. Second, block error
rate (BLER) of the proposed algorithm is analyzed in closed-form
by using pair-wise error probability analysis. Third, based on
the analyzed BLER, we propose adaptive compression schemes
subject to quality of service (QoS) constraints to minimize the
fronthaul transmission rate while satisfying the pre-defined target
QoS. As a dual problem, we also propose a scheme to minimize the
signal distortion subject to fronthaul rate constraint. Numerical re-
sults demonstrate that the proposed adaptive compression schemes
can achieve a compression ratio of 300% in experimental setups.

Index Terms—Cloud radio access network, fronthaul link, joint
decompression and detection, optimization.

I. INTRODUCTION

C LOUD radio access network (C-RAN) has been widely
accepted as a new architecture for future mobile net-

works to sustain the ever increasing demand in data rate [1].
In C-RAN, one centralized processor or Baseband Unit (BBU)
communicates with users distributed in a graphical area via
a number of remote radio heads (RRHs), which act as “soft”
relaying nodes and are connected to the BBU via high capacity
and low latency fronthaul links. By moving all baseband
processing functions from RRHs to a centralized processor,
C-RAN enables adaptive load balancing via virtual base station
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pool [2] and effective network-wide inter-cell interference
management thanks to multi-cell processing [3], [4]. The
promise of C-RAN over traditional mobile networks includes
system throughput improvement, high power efficiency, and
dynamic resource management, which eventually result in the
cost-saving on CAPital EXpenditure (CAPEX) and OPerating
EXpenditure (OPEX) [1], [5]. Because the baseband processing
functions are executed at the BBU, the In-phase/Quadrature-
phase (I/Q) samples which represent the physical signal ob-
tained through the sampling of the complex baseband signals
are exchanged between the RRHs and the BBU, resulting in
enormous transmission rate on the fronthaul links. Reducing
this rate is extremely important in the implementation of
C-RAN since the fronthaul links’ capacity is limited in practice.

Numerous research efforts have recently investigated the
compression of C-RAN, mostly from the information-theoretic
perspective, which design and optimize the quantization noise
to maximize the achievable sum rate [6]–[12]. This problem can
be seen as a network multiple-input multiple-output (MIMO)
problem with limited backhaul capacity [13]–[15]. The com-
pression process is implemented via a test channel and the
quantization noise is modelled as an independent Gaussian
random variable, whose variance is linked to the capacity of
the test channel. It is shown, in general, that the joint design of
the precoding and quantization noise matrix can significantly
improve the system sum rate over separate design [7]. Such
improvement results from the correlation among the RRHs
when distributed source coding is applied [3]. The quality of
the received signal at one RRH can be enhanced by exploiting
the signal at other RRHs as side information. In [7], a robust
distributed compression for uplink baseband signal is proposed
based on the Karhunen-Loeve transform. In that work, the
correlated data at base stations are assumed to be imperfect
and modelled as deterministic additive errors on the bound of
eigenvalue of the error matrix. Further performance gain can
be achieved by optimizing the test channel [16]. The authors
in [8] proposed a hybrid compression and message-sharing
strategy that allows a BS to perform a mix of compression
and data-sharing on the downlinks. It is shown that the hybrid
solution achieves a better rate region than the pure method of
compression or data-sharing. In [10], an optimum compression
method is derived for sensor networks to compress noisy sensor
measurements by minimizing the trace or determinant of the
error covariance matrix. Further review on C-RAN is presented
in [17] and [18].

From the practical system point of view, various compression
techniques have been studied in both time- and frequency-
domains (sub-carrier compression) [1]. The key idea in those
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techniques is to minimize redundancy of control information in
common public radio interface (CPRI) package structure [19].
Lossless compression is proposed to achieve a good compres-
sion ratio due to two added nodes at the ends of the fronthaul
links that optimize redundancy in both time and frequency
domains [20], [21]. Statistical multiplexing gain is achieved
from: i) only information data of active users are transmitted via
the fronthaul links, ii) a minimum information needed for the
reconstruction of the control information since a large amount
of control information, which is completely or semi static, is
locally generated, and iii) a reduced set of the precoding matrix
is transferred. A similar time-domain compression technique is
proposed by [22]. Note that most of the compression techniques
proposed in time domain are for single base station, which
cannot exploit residential gain from the correlation among
the RRHs.

In this paper, we study the compression on C-RAN uplinks
and propose a near-optimal receiver at the BBU. In practi-
cal systems, the received signal at a RRH is first uniformly
quantized into bits sequence by a analogue-to-digital converter
(ADC).1 These bits are then transmitted to the BBU via ideal
fronthaul links. Compression ratio can be managed by changing
the resolution of the ADC. The proposed compression method
is not limited to time domain and can be applied to fre-
quency domain with little modification. From the observation
that treating the decompression and demodulation separately
leads to a very suboptimal solution [9], we propose a joint
decompression and demodulation (JDD) algorithm that jointly
performs decompressing and detecting in a single step and
effectively exploits the correlation among the RRHs, which
achieves significant improvement in the information-theoretic
sense [3], [16]. Our first goal is to minimize the transmission
rate on the fronthaul links with an acceptable distortion of the
decompressed signal so that the BBU can support a maximum
number of RRHs. This design criterion is different from that
in [3] and [16], which aims to fully occupy the fronhaul link
capacity. Our objective comes from practical situations where
most applications can tolerate an acceptable non-zero block
error rate (BLER). A second goal is to minimize the signal
distortion given a fronthaul rate constraint. Analytical closed-
form expression for the BLER is derived using pair-wise error
probability (PEP) analysis, which is shown as a function of the
channel fadings, thermal noise, and quantization noise. Based
on the analyzed BLER expression, two adaptive compression
schemes with a quality of service (QoS) constraint are proposed
to maximize the compression ratio while satisfying a given
BLER target. We also present a JDD scheme which aims to
minimize the distortion given a predetermined fronthaul rate.

The rest of the paper is organized as follows. Section II
describes in details the system model and the compression
scheme. Section III presents the proposed JDD algorithm.
In Section IV the performance of the proposed algorithm is
analysed. The adaptive compression schemes are proposed in
Section V. Section VI shows numerical results. Finally, conclu-
sions and discussions are given in Section VII.

1Other non-linear quantization methods can also be applied.

Fig. 1. Block diagram of uplinks in C-RAN with joint decompression and
detection algorithm at the BBU. The adaptive compression scheme employs
rate allocation block to feedback optimal sampling rate to the RRHs.

II. SYSTEM MODEL

We consider a C-RAN system consisting of M users denoted
by U1, . . . , UM , N RRHs denoted by R1, . . . , RN , and one BBU,
as shown in Fig. 1. The users communicate with the RRHs via
wireless medium, while the RRHs connect to the BBU by high-
speed, low-latency optical fibre (or wireless) links, which are
known as fronthaul links [1]. A distinguished feature of the
RRHs compared with classical base station (BS) is that the
RRH’s function is much simpler than that of traditional BS
because all baseband processing functions are immigrated to
the BBU. Therefore, a RRH can be seen as a “soft” relaying
node that forwards I/Q signal to the BBU. The users and
RRHs are equipped with a single antenna. In practical system,
a multiple-antenna RRH can be seen as a band of single-
antenna RRHs2 because all baseband processing functions are
performed at the BBU. Due to limited capacity on the fronthaul
links, I/Q signal needs to be compressed before being sent to
the processing center [3]. The BBU decompresses the received
signal from the RRHs and then performs further processing. In
the following, we focus on the compression and decompression
on fronthaul uplinks.

We assume that all nodes are synchronous and all wireless
channels are block Rayleigh fading. The BBU is assumed to
know all the channel state information (CSI) in the network.
Denote by cm a modulated symbol emitted by user Um. The
modulated symbol cm, 1 ≤ m ≤ M, belongs to the source code-
book S = {s1, . . . , s|S|}, where |.| denotes the cardinality of
a set. The source codebook satisfies unit power constraint,
e.g., Es∈S |s|2 = 1. Denote c = [c1, . . . , cM]T as a codeword
transmitted by the users, where (.)T represents the vector/matrix
transpose. The received signal at Rn is given by

yn =
M∑

m=1

hnm

√
Pmcm + zn = hnPc + zn, (1)

where P = diag([√P1, . . . ,
√

PM]), Pm is the average transmit
power of user Um, hnm is the channel fading coefficient be-
tween Um and Rn, including the path loss, which is a complex
Gaussian random variable with zero mean and variance σ 2

hnm
,

hn = [hn1, . . . , hnM] is the channel vector from all users to
Rn, and zn is independent and identically distributed (i.i.d.)
Gaussian noise with zero mean and variance σ 2.

2These RRHs are subject to a sum rate constraint.
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Upon receiving analogue signals from the users, the RRHs
quantize and compress them into digital bits and then forward
these bits to the BBU.

A. Uniform Compression Scheme

To reduce the transmission rate on fronthaul links, the re-
ceived signal at each RRH is compressed before being sent
to the BBU. In this study, we consider uniform quantization
as the compression method because of its low-complexity and
practical implementation [23]. This compression method can be
realized by flexibly tuning the ADC’s resolution. Therefore, a
target compression ratio can be achieved by changing the reso-
lution of the ADC. In the case where the resolution of the ADC
is fixed due to some hardware constraints, this compression
method can be performed by truncating some least important
bits in the ADC’s output. The compression is executed on the
real and imaginary parts separately [1]. Let yR

n and yI
n be the real

and imaginary parts of yn, respectively. The received signal at
the n-th RRH is first normalized as

ȳn = yR
n

ηn
+ i

yI
n

ηn
= ȳR

n + iȳI
n,

where ηn is a scaling factor that restricts ȳR
n and ȳI

n within
[−1, 1] with high probability. The value of ηn can be calculated
for a given codebook S and the channel fading coefficients hn.
In this work, we use the “three-sigma” rule [25] in which ηn

is equal to three times the square root of the power of yn. For
a given hn, it is straightforward to compute the power of yn as
‖hnP‖2 + σ 2. Apply the “three-sigma” rule, the BBU computes
ηn =3

√‖hnP‖2+σ 2, which is assumed to be known at the n-th
RRH because its overhead is negligible compared with data.

In the next step, the normalized signal ȳn is quantized into
ỹn = ỹR

n + iỹI
n by an uniform quantizer whose resolution equals

to Qn bits. The compressed signal can be calculated from the
normalized signal as follows:

ỹa
n = ηn

round
(
ȳa

n × 2Qn
)

2Qn
,

where “a” represents either “R” or “I”; and the function
round(x) denotes the closest integer of x. The quantization error
at Rn is given as qn = yn − ỹn = qR

n + iqI
n. When the absolute

value of yn is large compared to quantization step, qR
n and qI

n can
be well modelled as uniform random variables with the support
[−δn, δn], where δn = ηn2−Qn−1. We observe via intensive
simulations that with the three-sigma rule, such assumption is
still feasible even with a small number of quantization bits.
After compression, ỹn is converted into a bit sequence which
is later sent to the BBU via error-free fronthaul links.

III. JOINT DECOMPRESSION AND

DEMODULATION ALGORITHM

In this section, we propose a JDD algorithm that performs
decompressing and detecting for the source codeword simul-
taneously by exploiting the structure of the quantizer and
the codebook. The BBU is assumed to know the CSI of all

wireless links. The CSI can be obtained via, e.g., channel
estimation with pilot transmission in training period. Given the
compressed bit sequences, the BBU optimally estimates the
source codeword by using the maximum a posteriori (MAP)
receiver as follows:

ĉ = arg max
c

Pr{c|ỹ1, . . . , ỹN}
(a)= arg max

c
Pr{c, ỹ1, . . . , ỹN}

(b)= arg max
c

Pr{c}
N∏

n=1

Pr{ỹn|c}, (2)

where (a) Pr{ỹ1, . . . , ỹN} is constant for any codeword, and
(b) the noise zn’s and compressed signals are independent given
the source codeword.

In (2), Pr{ỹn|c} is the probability that the quantizer outputs
ỹn from the observation yn = hnPc + zn. It is worth to mention
that for real signal, the linear quantizer outputs y if the distance
between the input and y is less than or equal to the quantization
error. For the complex signal yn, the quantizer outputs ỹn if
both |yR

n − ỹR
n | and |yI

n − ỹI
n| are less than the quantization error.

Because the quantization is performed independently for the
real and the imaginary parts, we have

Pr{ỹn|c}
= Pr

{
yR

n ∈ [
ỹR

n − δn, ỹR
n + δn

] ∩ yI
n ∈ [

ỹI
n − δn, ỹI

n + δn
] }

= Pr
{
yR

n ∈ [
ỹR

n − δn, ỹR
n + δn

] }
Pr

{
yI

n ∈ [
ỹI

n − δn, ỹI
n + δn

] }
.

To derive the above probability, we remind that for the given
the codeword and the fading channels, yR

n and yI
n are Gaussian

distributed with the same variance σ 2/2 and mean R(hnPc)
and I(hnPc), respectively, where R(x) and I(x) are the real
and imaginary parts of x. Therefore, the conditional probability
density function (PDF) of yR

n and yI
n are, respectively, given by

f
(
yM

n |c) = 1√
πσ

exp

(
−
∣∣yR

n − R(hnPc)
∣∣2

σ 2

)
,

f
(
yI

n|c
) = 1√

πσ
exp

(
−
∣∣yI

n − I(hnPc)
∣∣2

σ 2

)
.

By substituting the above PDFs into Pr{ỹn|c} we obtain

Pr{ỹn|c} =
∫ ỹR

n +δn

ỹR
n −δn

f
(
yR

n |c) dyR
n ×

∫ ỹI
n+δn

ỹI
n−δn

f (yI
n|c)dyI

n

= 1

4
(3)

×
[

erfc

(
ỹR

n −R(hnPc)−δn

σ

)
−erfc

(
ỹR

n −R(hnPc)+δn

σ

)]

×
[

erfc

(
ỹI

n−I(hnPc)−δn

σ

)
−erfc

(
ỹI

n−I(hnPc)+δn

σ

)]
,

where erfc(.) denotes the complementary error function.
Substituting (3) into (2), we then obtain a decoding rule for
codeword ĉ.
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IV. PERFORMANCE ANALYSIS

This section analyzes the BLER of the proposed JDD al-
gorithm. The BLER is defined as the probability of receiving
codeword ĉ when a codeword c �= ĉ was transmitted. A block
error event occurs when at least one of M symbols cm, 1 ≤
m ≤ M, is decoded with error. Since the BLER is difficult to
investigate, we instead resort to the union bound on the BLER
and consider the average pairwise error probability (APEP) as
follows:

BLER ≤ APEP = 1

|S|M
∑

c∈SM

∑
c�=c̃∈SM

Pr{c → c̃}. (4)

where Pr{c → c̃} is the instantaneous PEP of receiving c̃ when
c was transmitted, which depends on the channel fading coeffi-
cients, and c̃ is the only candidate.

To evaluate the PEP, we model the quantization effect by
an uniformly distributed random variable that is independent
from the input. This assumption can be well justified when the
absolute value of the input is much larger than the quantization
step. Under such assumption, the compressed signal from the
n-th RRH is modeled as

ỹn = hnPc + zn + qn, (5)

where qn = qR
n + iqI

n being quantization noise at Rn. Since both
qR

n and qI
n are uniformly distributed in [−δn, δn] (see Section II

for more details), it is straightforward to verify that qn has zero
mean and variance which is computed as

σ 2
qn

= Var(qn) = Var
(
qR

n

) + Var
(
qI

n

)
= 1

2δn

∫ δn

−δn

∣∣qR
n

∣∣2 dqR
n + 1

2δn

∫ δn

−δn

∣∣qI
n

∣∣2 dqI
n = 2δ2

n

3
.

Denote M(c) = ∏N
n=1 Pr{ỹn|c} as the detection metric of code-

word c, where Pr{ỹn|c} is computed in (3). A pair-wise error
occurs if the metric of the transmitted codeword is smaller than
that of another candidate:

Pr{c → c̃} = Pr
{
M(c) < M(c̃)

}
. (6)

The computation of (6) based on the exact expression in (3) is
very complicated due to the multi-fold product of erfc(.) func-
tions. As an alternative, we use the first order Taylor approx-
imation f (x) 
 f (x0) + f ′(x0)(x − x0), with x0 is any feasible
point. Applying to the function erfc(.) in (3) with x0 = (ỹR

n −
R(hnPc))/(σ ) for the real part and x0 = (ỹI

n − I(hnPc))/(σ )

for the imaginary part, Pr{ỹn|c} can be written as

Pr{ỹn|c} 
 δ2
n

πσ 2 exp

(
−|ỹn − hnPc|2

σ 2

)
. (7)

Remark 1: The derivation of Pr{ỹn|c} in (3) is exact and (3)
can be used as the (exact) decoding metric. However, under
high SNR regime and fading channel, the argument of erfc(.)
function in (3) can be very large, resulting in over buffer
and wrongly decoding. For a practical implementation of our

scheme, an approximation using first-order Taylor’s series (7)
can be used instead to avoid such problems.

Substituting (7) into M(c), we obtainM(c) = K exp(−D(c)),
where K = ∏N

n=1 δ2
n/(πσ 2)

N
is a constant and D(c) = ∑N

n=1|ỹn − hnPc|2. Then, the PEP is derived as:

Pr{c → c̃} = Pr

⎧⎪⎨
⎪⎩D(c) − D(c̃)︸ ︷︷ ︸

I(c,c̃)

> 0

⎫⎪⎬
⎪⎭ , (8)

where

I(c, c̃) =
N∑

n=1

[
ỹT

n hnP(c̃ − c) + (c̃ − c)TPhT
n ỹn

+ |hnPc|2 − |hnPc̃|2
]
.

Substituting (5) into I(c, c̃), we have:

I(c, c̃) =
N∑

n=1

[
zT

n hnP(c̃ − c) + (c̃ − c)TPhT
n zn

]

+
N∑

n=1

[
qT

n hnP(c̃ − c) + (c̃ − c)TPhT
n qn

] − ψ,

where ψ = ∑N
n=1 |hnP(c̃ − c)|2.

Let us define Z1 = ∑N
n=1[zT

n hnP(c̃ − c) + (c̃ − c)TPhT
n zn]

and Z2 = ∑N
n=1[qT

n hnP(c̃−c)+(c̃ − c)TPhT
n qn]. Because each

zn is a complex Gaussian random variable with zero mean and
variance σ 2, and zn’s are mutually independent, Z1 is also a
Gaussian random variable with zero mean and variance

σ 2
Z1

= 2σ 2
N∑

n=1

∣∣hnP(c̃ − c)
∣∣2 .

On the other hand, because qn is uniformly distributed, it is
complicated to compute the exact joint PDF of Z2. For ease
of analysis, we model Z2 by a Gaussian variable Z̄2 that has
similar mean and variance as Z2, i.e., Z̄2 ∼ N (μZ2 , σ

2
Z2

), where

μZ̄2
= E{Z2} = 0 and σ 2

Z̄2
= E{|Z2|2} = 2

∑N
n=1 σ 2

qn
|hnP(c̃ −

c)|2 = 4
3

∑N
n=1 δ2

n|hnP(c̃ − c)|2. Then the sum Z = Z1 + Z2 is
also a Gaussian random variable with zero mean and variance
σ 2

Z = σ 2
Z1

+ σ 2
Z̄2

. Therefore we can compute the PEP as follows:

Pr{c → c̃} = Pr{Z > ψ} = 1

2
(9)

× erfc

⎛
⎜⎜⎜⎜⎝

∑N
n=1

∣∣hnP(c̃ − c)
∣∣2√

4σ 2
N∑

n=1

∣∣hnP(c̃ − c)
∣∣2+ 8

3

N∑
n=1

δ2
n

∣∣hnP(c̃ − c)
∣∣2

⎞
⎟⎟⎟⎟⎠.

It is observed from (9) that the PEP depends on the relative dis-
tance between c and c̃ distorted by the fading channels, thermal
noise power σ 2, and the compression noise δn. Substituting (9)
into (4), we obtain the upper bound for the BLER.
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V. ADAPTIVE COMPRESSION UNDER QOS CONSTRAINT

In practical systems, various applications might require dif-
ferent QoSs depending on specific contexts. For example, a
voice message usually requires a lower QoS compared to a
video call. A flexible compression scheme should be capable
to adapt the compression ratio to satisfy a predefined QoS and
maximize the compression efficiency. In this section, we first
propose two adaptive compression schemes to maximize the
compression efficiency under a certain target BLER so that
a front-haul link can support a maximal number of antennas.
Such schemes are desirable for systems which support large
front-haul feedback and/or require stringent BLER QoS. Fur-
thermore, we also consider an adaptive compression design
which minimizes the BLER, specifically the PEP as a proxy
of BLER, given a compression efficiency. Compared to the
previous two counterparts, this design focuses on systems with
stricter constraint on the front-haul bandwidth.

A. Minimization of the Number of Bits Given the BLER

In this subsection, we consider systems which require a
certain BLER QoS while tolerating a possible large front-haul
bandwidth. In particular, we would like to minimize the number
of bits for quantization under the QoS constraint as follows:

minimize
{Qn≥1}N

n=1

N∑
n=1

Qn (10)

s.t.
1

|S|M
∑∑
c̃�=c∈SM

Pr{c → c̃} ≤ BLER0,

where BLER0 is the predefined BLER target, and Pr{c → c̃} is
given in (9).

1) PEP-Based Algorithm: The problem in (10) is difficult to
solve due to its non-convexity. We instead propose an alterna-
tive approach which gives us an upper-bound of (10) as follows:

minimize
{Qn≥1}N

n=1

N∑
n=1

Qn (11)

s.t.
1

2
erfc

(√
�c̃,c

)
≤ BLER0

|S|M − 1
,∀ c̃ �= c,

where

�c̃,c =
(∑N

n=1

∣∣hnP(c̃ − c)
∣∣2)2

4σ 2
∑N

n=1

∣∣hnP(c̃− c)
∣∣2+ 8

3

∑N
n=1 δ2

n

∣∣hnP(c̃ − c)
∣∣2 ,

and the constraint in (11) is obtained by using Pr{c → c̃} in (9).
We note that the optimal solution of (11) always satisfies

(10), i.e., the optimal objective value of (11) is an upper-
bound for that of (10). The proof is as follows. Let Pe(c)
be error probability when c was transmitted and ĉ �= c is
received, i.e., Pe(c) = Pr{ĉ ∈ SM \ c|c}, where SM \ c denotes

the set of codewords except c. Obviously, Pr{ĉ ∈ SM \ c|c} ≤∑
ĉ�=c PEP{c → ĉ}. This confirms that the optimal objective

value of (11) is an upper-bound for that of (10). Note that (11)
is an integer programming problem, which is difficult to solve.
We therefore resort to a convex formulation of (11) by relaxing
the integer constraint of Qn.

By introducing μn = 2−2(Qn+1), we can reformulate (11) as:

minimize{
μn≤ 1

4

}N

n=1

N∑
n=1

−1

2
log2(μn) (12)

s.t. (13),∀ c̃ �= c,

where

4σ 2
N∑

n=1

∣∣hnP(c̃ − c)
∣∣2 + 8

3

N∑
n=1

η2
n

∣∣hnP(c̃ − c)
∣∣2 μn

≤
(∑N

n=1

∣∣hnP(c̃ − c)
∣∣2)2

α
. (13)

In (13), α is an auxiliary variable satisfying 1
2 erfc(

√
α) =

BLER0
|S|M−1 . Note that we can consider α as the maximum PEP that
the BLER0 constraint can still be satisfied. The problem (10)
with a BLER constraint has been effectively transformed to a
PEP-based counterpart [24]. We denote the scheme that solved
(12) as MinBits-PEP.

It can be proved that (12) is a convex optimization problem
and thus can be solved efficiently by using, e.g., the primal-
dual interior point method [26]. Furthermore, (11) is substan-
tially simpler than (10) and is more preferable under systems
requiring low complexity. The integer quantization bit Qn can
be obtained from μn simply by choosing the smallest following
integer of Q̂n = 1 − 1

2 log2 μn, i.e., �Q̂n�. In general, there is no
bound for the optimality loss of such approximation. However,
as the constraint threshold BLER tends to 0, the loss also tends
to 0. The reasoning is that each Qn becomes large in such case,

which leads to a small Q̂n−�Q̂n�
Q̂n

.

2) SDR-Based Algorithm: In this subsection, we propose
an approximated solution for problem (10) using semidefinite
programming relaxation (SDR). The problem (10) is first re-
written as

minimize
{Qn≥1}N

n=1

N∑
n=1

Qn (14)

s.t.
1

|S|M
∑∑
c̃�=c∈SM

1

2
erfc)

√
αc̃,c) ≤ BLER0,

αc̃,c ≤ �c̃,c,∀ c̃ �= c

Let us introduce μn as in Section V-A1, and x ∈ R
(L+N+1)×1

x = [α1 . . . αLμ1 . . . μN1]T ,
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and Ac̃,c ∈ R
(L+N+1)×(L+N+1) which is given in (15), shown at

the bottom of the page, where L = |S|M × (|S|M − 1). Problem
(14) can be expressed as

minimize{
μn≤ 1

4

}N

n=1
,x

N∑
n=1

−1

2
log2(μn) (16)

s.t.
1

|S|M
∑∑
c̃�=c∈SM

1

2
erfc(

√
αc̃,c) ≤ BLER0,

trace(Ac̃,cxxT) ≤
(

N∑
n=1

∣∣hnP(c̃ − c)
∣∣2)2

,

By defining X=xxT, problem (16) is equivalent to the following:

minimize
X

L+N∑
n=L+1

−1

4
log2

([X]n,n
)

(17)

s.t.
1

|S|M
L∑

l=1

1

2
erfc

(
[X]1/4

l,l

)
≤ BLER0,

trace(Ac̃,cX) ≤
(

N∑
n=1

∣∣hnP(c̃ − c)
∣∣2)2

,

[X]n,n ≤ 1

16
, n = L + 1, . . . , L + N,

rank(X) = 1.

The SDR of (17) is obtained by ignoring the rank constraint.
It can be shown that the SDR of (17) is a convex optimization
problem and is solvable by using, e.g., the primal-dual interior
point method [26]. We denote the scheme that solve (17)
without the rank constraint as MinBits-SDR.

Compared with the PEP-based minimization, the BLER-
based minimization is expected to achieve higher compression
ratio with the trade-off of higher computing complexity. This is
because the PEP-based solution guarantees all PEP satisfying
the target QoS, which can result in a smaller BLER than
necessary. Consequently, the PEP-based solution requires more
fronthaul rate to achieve a better BLER.

Remark 2: In general, a SDR solution of (17) might violate
the rank-one constraint, which is, in fact, a generic problem
of SDR. To obtain an approximated (vector) solution x∗ for
(17) from a SDR counterpart X∗, we implement the Gaussian
randomization procedure [28]. Please refer to [28] for more
details of such procedure and its approximation accuracies
under several setups.

Remark 3: To facilitate the computation of the first con-
straint in (17), a tight approximation of the erfc(x) 
 1

6 e−x2 +
1
2 e−4x2/3 can also be employed [27, eq. (14)]. The resulting
problem (18) is still convex and solvable as follows:

minimize
X

L+N∑
n=L+1

−1

4
log2

([X]n,n
)

(18)

s.t.
1

|S|M
L∑

n=1

1

12
exp

(
−[X]

1
2
n,n

)
+ 1

4
exp

(
−4

3
[X]

1
2
n,n

)
≤BLER0,

trace(Ac̃,cX) ≤
(

N∑
n=1

|hnP(c̃ − c)|2
)2

,∀ c̃ �= c

[X]n,n ≤ 1

16
, n = L + 1, . . . , L + N.

B. Minimization of the Maximum PEP Given the Number of
Bits Qsum

In this section, we investigate the dual problem of (10) which
is solved in Section V-A1 and Section V-A2 by using PEP- and
SDR-based algorithms. Particularly, we want to minimize the
BLER given that

∑N
n=1 Qn ≤ Qsum. This problem arises under

systems with limited front-haul bandwidth but less stringent
BLER constraint. The problem, however, is difficult to solve.
Therefore, similar to Section V-A1, we will consider an al-
ternative problem based on PEP which gives an upper-bound
solution for the original optimization. The alternative problem
is mathematically expressed as follows:

minimize
{Qn≥1}N

n=1

max
c̃�=c

Pr{c → c̃} = 1

2
erfc(

√
�c̃,c) (19)

s.t.
N∑

n=1

Qn ≤ Qsum

Because erfc(.) is a monotonic function, by introducing an
auxiliary varable α, we reformulate (19) as:

maximize
{Qn≥1}N

n=1

α (20)

s.t. α ≤ �c̃,c,∀ c̃ �= c,
N∑

n=1

Qn ≤ Qsum,

Ac̃,c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0
0 . . . 0 8

3η2
1

∣∣h1P(c̃ − c)
∣∣2 . . . 8

3η2
N

∣∣hNP(c̃ − c)
∣∣2 4σ 2 ∑N

n=1

∣∣hnP(c̃ − c)
∣∣2

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15)
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TABLE I
MINBLER-PEP ALGORITHM

where �c̃,c has been defined in Section V-A. In another form,
(20) is identical to the following problem:

maximize
{Qn≥1}N

n=1

α (21)

s.t. (22),∀ c̃ �= c,
N∑

n=1

Qn ≤ Qsum,

where the first constraint in problem (21) is given as follows:

8

3

N∑
n=1

η2
n

∣∣hnP(c̃ − c)
∣∣2 2−2(Qn+1) (22)

≤
(∑N

n=1

∣∣hnP(c̃ − c)
∣∣2)2

α
− 4σ 2

N∑
n=1

∣∣hnP(c̃ − c)
∣∣2 .

Similar to Section V-A1, we have used the maximum PEP as
a proxy for the BLER minimization. The auxiliary variable α

effectively represents the minimum SNR across all users which
is achievable under the Qsum constraint. Note that given α,
(21) is a convex optimization problem and thus solvable using
standard methods. We therefore resort to a bisection technique
to solve (21). The resulting optimization problem, whose steps
are given in Algorithm 1, is given as follows:

maximize
{Qn≥1}N

n=1

αM (23)

s.t. 	(αM),∀ c̃ �= c
N∑

n=1

Qn ≤ Qsum,

where 	(αM) is obtained by replacing α in (22) by αM . We
denote this scheme as MinBLER-PEP (Table I).

Remark 4: The decoder and optimization derived in this
paper are based on the ML receiver and thus have a complexity
that exponentially increases with the number of users. In order
to reduce the computing complexity, one can consider sphere
decoder, which significantly reduces the computing complexity
by reducing the search circle, but can achieve a close perfor-
mance as the ML decoder.

VI. SIMULATION RESULTS

To demonstrate the effectiveness of the proposed algorithms,
simulation is carried out on a network that consists of M = 3
users and N = 3 RRHs. We assume block Rayleigh fading
channel and symmetric network with equal user’s transmit
energy, e.g., P1 = . . . = PM = P. The average SNR is defined
as P/σ 2. In addition, σ 2

hnn
= 1,∀ n, and σ 2

hnm
= 0.5 for n �= m.

During each channel realization, the users emit a message
comprising of K = 1000 data symbols that belong to a QPSK

Fig. 2. BLER of the proposed JDD algorithm compared with separate de-
compression and detection, and with MMSE receivers. Rate allocation 1:
[Q1, Q2, Q3] = [4, 4, 4]. Rate allocation 2: [Q1, Q2, Q3] = [2, 4, 6].

Fig. 3. BLER of the joint decompression and detection algorithm with differ-
ent fronthaul sampling resolution Q = 3, 4, 6, 12 bits.

codebook, i.e., S = {−1 − 1i,−1 + 1i, 1 − 1i, 1 + 1i}. All the
RRHs apply uniform quantization. The BBU is assumed to
know CSI of the entire network.

Fig. 2 compares the proposed JDD algorithm with two
references: Separate decompression and detection (SDD) and
minimum mean square error (MMSE) [29] receivers. The
SDD receiver detects the source symbols merely based on the
Hamming distance between the received signal and the trial
codeword. The MMSE receiver separates the received signal
vector into M orthogonal sub-streams by multiplying it with a

matrix W: x̂=WH ỹ, where H=[h1
T , . . . , hN

T ]T
, ỹ=[ỹ1, . . . ,

ỹN]T , W=(HHH +NI)
−1

H, and (.)H and (.)−1 denote the
Hermitian transpose and inversion operator, respectively. We
note that SDD and MMSE receivers ignore the quantization
noise and use the quantized output ỹ as the correct output. It is
shown that the proposed algorithm, which takes into considera-
tion effect of quantization noise, achieves the best performance
compared with the references. Such expected gain results from
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Fig. 4. BLER performance (a) and compression efficiency (b) of the adaptive compression schemes with target BLER0 = 1e-2 for different SNR. The fronthaul
bandwidth Q = 12 bits.

the searching over all combinations of the source symbols of the
proposed algorithm. In addition, the proposed JDD algorithm
yields larger gain over SDD receiver in non-uniform fronthaul
bandwidths (Rate allocation 2). This is because the quantization
noise in this case, which is ignored in SDD receiver, has more
impact on the overall system performance.

Fig. 3 presents the BLER performance of the proposed
receiver versus SNR for different fronthaul sampling rates. The
BLER is measured as the probability that at least one of M
source symbols is decoded with error. Here we assume that
the RRHs have uniform fronthaul bandwidth allocation. It is
observed that the fronthaul bandwidth Q has effects on both
BLER and diversity order. In general, larger Q results in better
BLER, and the BLER will saturate as Q decreases. At low
SNRs, the contribution of quantization noise is small. For ex-
ample, under SNRs between 0 dB and 8 dB, sampling at 4 bits
per sample or 12 bits per sample achieves almost similar BLER.
This is due to the fact that under small/medium SNR regime,
thermal noise is large, and therefore, is dominant compared
with the quantization noise. In contrast, under the high SNR
regime, the thermal noise is comparable to or even smaller than
the quantization noise. Decreasing Q in this case can result in
severe loss in BLER. It is also observed that a 6-bit quantizer
achieves almost similar performance as a 12-bit counterpart
under the considered setting and the observing SNR range.
This interesting observation suggests an adaptive compression
scheme to minimize the fronthaul rate while maintaining the
BLER under a given QoS.

Fig. 4 presents the BLER of adaptive compression ver-
sus SNR for given QoS constraint. The premise is that di-
fferent applications require various QoS, e.g., BLER levels.
For a given BLER, we want to maximize the compression
efficiency, or equivalently to minimize the fronthaul transmis-
sion rate. Two adaptive compression schemes based on PEP
constraint (Section V-A1, named MinBits-PEP) and BLER
constraint (Section V-A2, named MinBits-SDR) are presented.
In addition, the scheme without QoS constraint which fully

occupies the fronthaul bandwidth (named “No Constraint”),
and the “Exhaustive Search” optimization are also plotted. For
the Exhaustive Search, we check every combination of the
rate allocation [Q1, Q2, . . . , QN] and find the one which gives
the minimum fronthaul rate while satisfying the BLER target.
Such scheme yields the optimal rate allocation, but hindered by
its NP-complete complexity. 300 channel realizations are con-
ducted in the simulation. The threshold BLER0 is equal to 1e-2.
The BLER performance is shown in Fig. 4(a) and the actual
fronthaul rate is presented in Fig. 4(b). At very low SNR, the
BLER does not satisfy the target QoS because the channel is too
poor. Even using all 12 bits for quantization does not satisfy the
target BLER. One good thing is that although not satisfying
the target BLER, the proposed adaptive compressions achieve
smaller fronthaul rate (higher compression ratio). More specifi-
cally, at 8 dB the MinBits-PEP algorithm saves 1.4 bits and the
MinBits-SDR algorithm saves 5 bits. Moving to higher SNR
regime (from 12 dB in the figure), both adaptive schemes meet
the target QoS while significantly improve the compression
ratio. Because the No Constraint scheme always uses 12 bits
for quantization, its fronthaul rate is 12 bits per sample in the
whole SNR range. On the other hand, a compression ratio of
350% is observed by both adaptive schemes, which only require
3.4 bits per sample to achieve a BLER less than or equal 1e-2.
It is also shown in the figure that the MinBits-SDR achieves
close performance to the Exhaustive Search, which confirms the
effectiveness of the SDR optimization. Furthermore, the
MinBits-SDR obtains a better compression efficiency than the
MinBits-PEP at low and medium SNR. This result is obvious
since the MinBits-PEP minimizes the worst PEP while the
MinBits-SDR targets the BLER. When the SNR is large, it pre-
fers to employ MinBits-PEP because it yields smaller BLER.

Fig. 5 shows BLER and compression efficiency of adaptive
compressions for different fronthaul bandwidth Q at SNR =
12 dB. Similar to the previous simulation, the target BLER0
is set at 1e-2. The results show that all schemes satisfy the
BLER target while significantly reduce the fronthaul rate. The
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Fig. 5. BLER performance (a) and compression efficiency (b) of adaptive compression with target BLER0 = 1e-2 for different fronthaul bandwidths, SNR = 12 dB.

Fig. 6. BLER comparison of the optimal rate allocation scheme for different Qsum. Rate allocation 1: [Q1, Q2, Q3] = [n, n, n], Rate allocation 2: [Q1, Q2, Q3] =
[n − 2, n, n + 2], where n is the average fronthaul bandwidth. In Fig. a, Qsum = 9. In Fig. b, SNR = 12 dB. (a) BLER v.s. SNR. (b) BLER v.s. fronthaul bandwidth.

MinBits-SDR does exactly what we require: it satisfies the
BLER of 1e-2, but no more. In that sense, it is the best since it
satisfies the constraint but with less number of bits. The MinBits-
PEP acheives similar BLER as that of the No Constraint
scheme while the MinBits-SDR obtains slightly worse BLER.
However, they are all satisfied the target BLER of 1e-2. Specif-
ically, the compression efficiency obtained by the MinBits-PEP
increases from 120% at Q = 5 to 240% at Q = 12; while
the MinBits-SDR achieves better compression efficiency from
160% at Q = 5 to about 330% at Q = 12. This observation is
consistent with the result in Fig. 3, which shows that at 12 dB
the 4-bit sampling and 12-bit sampling yield approximately
similar performance.

The above results aim at minimizing the actual fronthaul
rate subject to the BLER constraint. Based on the analysed
BLER in Section IV, a reciprocal problem is how to allocate the
fronthaul bandwidth {Qn}N

n=1 to minimize the BLER for a given
sum of Qsum = ∑N

n=1 Qn. Because the n-th RRH uses all Qn

bit for quantization, we refer Qn as fronthaul rate in this para-

graph for simplicity. The optimization problem is described in
Section V-B. Fig. 6(a) shows the BLER of the MinBLER-PEP
and two other allocation schemes: uniform rate allocation (Rate
allocation 2), e.g., Q1 = Q2 = Q3, and non-uniform rate alloca-
tion (Rate allocation 1), e.g., [Q1, Q2, Q3]=[Q−2, Q, Q+2].
The sum rate Qsum = 9. In addition, the performance of Ex-
haustive Search is also presented. For the Exhaustive Search
scheme in Fig. 6, we check every combination of the rate allo-
cation [Q1, Q2, Q3] and find the one which gives the minimum
BLER based on (4) while satisfying the Qsum constraint. As
expected, our MinBLER-PEP algorithm achieves almost the
same BLER as the Exhaustive Search, which yields the best
BLER, but is limited by its NP-complete complexity. It is
observed that the non-uniform rate allocation scheme obtains
the worse BLER because there is always one RRH using fewer
quantization bits than needed. At low SNR, both uniform and
optimal rate allocations get similar performance because at this
SNR the thermal noise is dominant. As SNR increases, perfor-
mance gain provided by the optimal rate allocation is larger.
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Fig. 7. Performance comparison between all-symbol scheme and nearest-symbol scheme. 4-PAM modulation, N = M = 2. Average fronthaul bandwidth is equal
to 12 bits. (a) Compression efficiency. (b) BLER performance.

Fig. 6(b) shows the BLER for different number of Qsum at
12 dB. The performance of non-uniform allocation is the worst
when Qsum is small but it approaches the optimal BLER when
Qsum increases. The optimal allocation outperforms uniform
rate allocation with small Qsum and achieves similar BLER as
Qsum increases. Other observation is that the optimal BLER
remains constant for a large range of Qsum. This is explained
from Fig. 3 that at 12 dB, 4-bit quantization nearly achieves
the same performance as 12-bit quantization. Spending more
bits in this case only bring a small improvement in BLER. In
conclusion, the MinBLER-PEP based rate allocation is more
effective in high SNR and when the fronthaul bandwidth is
small. Otherwise, uniform rate allocation is less complex but
still can achieve the best performance.

Remark 5: The schemes MinBits-SDR and MinBits-PEP
derived in the present paper are based on the bound (4),
which consider all PEPs. When the number of users or the
modulation order is large, this bound can be too relax. In this
case, considering the nearest symbols only might be practically
preferred due to its lower complexity (less PEP constraints) and
better compression gain. Such possible gain is demonstrated
in Fig. 7.

VII. CONCLUSION AND DISCUSSIONS

We have proposed a near-optimal receiver structure for cloud
radio access networks, which takes into consideration quanti-
zation effect of capacity-limited fronthaul links and exploits
the correlation among the remote radio heads. Analytical result
has been derived for the pair-wise error probability. Based on
the analysed PEP, two adaptive compression schemes have
been proposed to improve the compression efficiency while
satisfying the QoS constraint. The proposed optimization prob-
lem comes from practical situation in which most applications
tolerate a target QoS, e.g., BLER. A compression efficiency of
350% can be achieved by the proposed optimization schemes.

In addition, an optimal rate allocation, which minimizes the
BLER given the compression efficiency, has also been proposed
based on the theoretical PEP.

For future extensions of this work, several directions are
promising. The first problem is to develop low-complexity
decoder for the proposed architecture, e.g, sphere decoding.
The second problem is to consider imperfect CSI scenario.
In such practical systems, due to a large number of nodes
in CRAN, it is usually very difficult, if not impossible, to
acquire accurate CSI of every link. In this case, understanding
the impact of CSI error on the system performance is crucial.
Third, the current work assumes the network is fully connected
and the BBU has knowledge of all connections. However, in
reality, the BBU might only know the instantaneous value of a
subset of the channels because some links cannot be estimated.
Therefore, a robust receiver design is required. Finally, we can
also consider adaptive modulation. In practical systems with
time-varying channels, it is necessary to choose the suitable
modulation schemes as well as to optimize the usage of fron-
thauls bandwidth. This technique, however, requires another
layer of optimization.
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