5,266 research outputs found

    Learning Bilingual Word Representations by Marginalizing Alignments

    Full text link
    We present a probabilistic model that simultaneously learns alignments and distributed representations for bilingual data. By marginalizing over word alignments the model captures a larger semantic context than prior work relying on hard alignments. The advantage of this approach is demonstrated in a cross-lingual classification task, where we outperform the prior published state of the art.Comment: Proceedings of ACL 2014 (Short Papers

    Improving the translation environment for professional translators

    Get PDF
    When using computer-aided translation systems in a typical, professional translation workflow, there are several stages at which there is room for improvement. The SCATE (Smart Computer-Aided Translation Environment) project investigated several of these aspects, both from a human-computer interaction point of view, as well as from a purely technological side. This paper describes the SCATE research with respect to improved fuzzy matching, parallel treebanks, the integration of translation memories with machine translation, quality estimation, terminology extraction from comparable texts, the use of speech recognition in the translation process, and human computer interaction and interface design for the professional translation environment. For each of these topics, we describe the experiments we performed and the conclusions drawn, providing an overview of the highlights of the entire SCATE project

    Identifying Semantic Divergences in Parallel Text without Annotations

    Full text link
    Recognizing that even correct translations are not always semantically equivalent, we automatically detect meaning divergences in parallel sentence pairs with a deep neural model of bilingual semantic similarity which can be trained for any parallel corpus without any manual annotation. We show that our semantic model detects divergences more accurately than models based on surface features derived from word alignments, and that these divergences matter for neural machine translation.Comment: Accepted as a full paper to NAACL 201

    Multilingual Models for Compositional Distributed Semantics

    Full text link
    We present a novel technique for learning semantic representations, which extends the distributional hypothesis to multilingual data and joint-space embeddings. Our models leverage parallel data and learn to strongly align the embeddings of semantically equivalent sentences, while maintaining sufficient distance between those of dissimilar sentences. The models do not rely on word alignments or any syntactic information and are successfully applied to a number of diverse languages. We extend our approach to learn semantic representations at the document level, too. We evaluate these models on two cross-lingual document classification tasks, outperforming the prior state of the art. Through qualitative analysis and the study of pivoting effects we demonstrate that our representations are semantically plausible and can capture semantic relationships across languages without parallel data.Comment: Proceedings of ACL 2014 (Long papers
    corecore