488 research outputs found

    Linking Visual Cortical Development to Visual Perception

    Full text link
    Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409); National Science Foundation (IRI-97-20333); Office of Naval Research (N00014-95-1-0657

    Linking Visual Development and Learning to Information Processing: Preattentive and Attentive Brain Dynamics

    Full text link
    National Science Foundation (SBE-0354378); Office of Naval Research (N00014-95-1-0657

    A Neural Model of How the Cortical Subplate Coordinates the Laminar Development of Orientation and Ocular Dominance Maps

    Full text link
    Air Force Office of Scientific Research (F49620-98-1-0108, F49620-0 1-1-0397); Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409); National Science Foundation (IIS-97-20333); Office of Naval Research (N00014-01-1-0624

    How does the Cerebral Cortex Work? Learning, Attention, and Grouping by the Laminar Circuits of Visual Cortex

    Full text link
    The organization of neocortex into layers is one of its most salient anatomical features. These layers include circuits that form functional columns in cortical maps. A major unsolved problem concerns how bottom-up, top-down, and horizontal interactions are organized within cortical layers to generate adaptive behaviors. This article models how these interactions help visual co1tex to realize: (I) the binding process whereby cortex groups distributed data into coherent object representations; (2) the attentional process whereby cortex selectively processes important events; and (3) the developmental and learning processes whereby cortex shapes its circuits to match environmental constraints. New computational ideas about feedback systems suggest how neocortex develops and learns in a stable way, and why top-down attention requires converging bottom-up inputs to fully activate cortical cells, whereas perceptual groupings do not.Defense Advanced Research Projects Agency; National Science Foundation (IRI-97-20333); Office of Naval Research (N00014-95-1-0409, N00014-95-1-0657

    A survey of visual preprocessing and shape representation techniques

    Get PDF
    Many recent theories and methods proposed for visual preprocessing and shape representation are summarized. The survey brings together research from the fields of biology, psychology, computer science, electrical engineering, and most recently, neural networks. It was motivated by the need to preprocess images for a sparse distributed memory (SDM), but the techniques presented may also prove useful for applying other associative memories to visual pattern recognition. The material of this survey is divided into three sections: an overview of biological visual processing; methods of preprocessing (extracting parts of shape, texture, motion, and depth); and shape representation and recognition (form invariance, primitives and structural descriptions, and theories of attention)

    How Does the Cerebral Cortex Work? Developement, Learning, Attention, and 3D Vision by Laminar Circuits of Visual Cortex

    Full text link
    A key goal of behavioral and cognitive neuroscience is to link brain mechanisms to behavioral functions. The present article describes recent progress towards explaining how the visual cortex sees. Visual cortex, like many parts of perceptual and cognitive neocortex, is organized into six main layers of cells, as well as characteristic sub-lamina. Here it is proposed how these layered circuits help to realize the processes of developement, learning, perceptual grouping, attention, and 3D vision through a combination of bottom-up, horizontal, and top-down interactions. A key theme is that the mechanisms which enable developement and learning to occur in a stable way imply properties of adult behavior. These results thus begin to unify three fields: infant cortical developement, adult cortical neurophysiology and anatomy, and adult visual perception. The identified cortical mechanisms promise to generalize to explain how other perceptual and cognitive processes work.Air Force Office of Scientific Research (F49620-01-1-0397); Office of Naval Research (N00014-01-1-0624

    Neural Models of Seeing and Thinking

    Full text link
    Air Force Office of Scientific Research (F49620-01-1-0397); Office of Naval Research (N00014-01-1-0624

    A Neural Model of How Horizontal and Interlaminar Connections of Visual Cortex Develop into Adult Circuits that Carry Out Perceptual Grouping and Learning

    Full text link
    A neural model suggests how horizontal and interlaminar connections in visual cortical areas V1 and V2 develop within a laminar cortical architecture and give rise to adult visual percepts. The model suggests how mechanisms that control cortical development in the infant lead to properties of adult cortical anatomy, neurophysiology, and visual perception. The model clarifies how excitatory and inhibitory connections can develop stably by maintaining a balance between excitation and inhibition. The growth of long-range excitatory horizontal connections between layer 2/3 pyramidal cells is balanced against that of short-range disynaptie interneuronal connections. The growth of excitatory on-center connections from layer 6-to-1 is balanced against that of inhibitory interneuronal off-surround connections. These balanced connections interact via intracortical and intercortical feedback to realize properties of perceptual grouping, attention, and perceptual learning in the adult, and help to explain the observed variability in the number and temporal distribution of spikes emitted by cortical neurons. The model replicates cortical point spread functions and psychophysical data on the strength of real and illusory contours. The on-center off-surround layer 6-to-4 circuit enables top-down attentional signals from area V2 to modulate, or attentionally prime, layer 4 cells in area VI without fully activating them. This modulatory circuit also enables adult perceptual learning within cortical area, V1 and V2 to proceed in a stable way.Defense Advanced Research Projects Agency and Office of Naval Hesearch (N00014-95-l-0109); National Science Foundation (IRI-97-20333); Office of Naval Research (N00014-95-1-0657

    Towards a Unified Theory of Neocortex: Laminar Cortical Circuits for Vision and Cognition

    Full text link
    A key goal of computational neuroscience is to link brain mechanisms to behavioral functions. The present article describes recent progress towards explaining how laminar neocortical circuits give rise to biological intelligence. These circuits embody two new and revolutionary computational paradigms: Complementary Computing and Laminar Computing. Circuit properties include a novel synthesis of feedforward and feedback processing, of digital and analog processing, and of pre-attentive and attentive processing. This synthesis clarifies the appeal of Bayesian approaches but has a far greater predictive range that naturally extends to self-organizing processes. Examples from vision and cognition are summarized. A LAMINART architecture unifies properties of visual development, learning, perceptual grouping, attention, and 3D vision. A key modeling theme is that the mechanisms which enable development and learning to occur in a stable way imply properties of adult behavior. It is noted how higher-order attentional constraints can influence multiple cortical regions, and how spatial and object attention work together to learn view-invariant object categories. In particular, a form-fitting spatial attentional shroud can allow an emerging view-invariant object category to remain active while multiple view categories are associated with it during sequences of saccadic eye movements. Finally, the chapter summarizes recent work on the LIST PARSE model of cognitive information processing by the laminar circuits of prefrontal cortex. LIST PARSE models the short-term storage of event sequences in working memory, their unitization through learning into sequence, or list, chunks, and their read-out in planned sequential performance that is under volitional control. LIST PARSE provides a laminar embodiment of Item and Order working memories, also called Competitive Queuing models, that have been supported by both psychophysical and neurobiological data. These examples show how variations of a common laminar cortical design can embody properties of visual and cognitive intelligence that seem, at least on the surface, to be mechanistically unrelated.National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624
    corecore