6,504 research outputs found

    Interactive retrieval of video using pre-computed shot-shot similarities

    Get PDF
    A probabilistic framework for content-based interactive video retrieval is described. The developed indexing of video fragments originates from the probability of the user's positive judgment about key-frames of video shots. Initial estimates of the probabilities are obtained from low-level feature representation. Only statistically significant estimates are picked out, the rest are replaced by an appropriate constant allowing efficient access at search time without loss of search quality and leading to improvement in most experiments. With time, these probability estimates are updated from the relevance judgment of users performing searches, resulting in further substantial increases in mean average precision

    Multidimensional Range Queries on Modern Hardware

    Full text link
    Range queries over multidimensional data are an important part of database workloads in many applications. Their execution may be accelerated by using multidimensional index structures (MDIS), such as kd-trees or R-trees. As for most index structures, the usefulness of this approach depends on the selectivity of the queries, and common wisdom told that a simple scan beats MDIS for queries accessing more than 15%-20% of a dataset. However, this wisdom is largely based on evaluations that are almost two decades old, performed on data being held on disks, applying IO-optimized data structures, and using single-core systems. The question is whether this rule of thumb still holds when multidimensional range queries (MDRQ) are performed on modern architectures with large main memories holding all data, multi-core CPUs and data-parallel instruction sets. In this paper, we study the question whether and how much modern hardware influences the performance ratio between index structures and scans for MDRQ. To this end, we conservatively adapted three popular MDIS, namely the R*-tree, the kd-tree, and the VA-file, to exploit features of modern servers and compared their performance to different flavors of parallel scans using multiple (synthetic and real-world) analytical workloads over multiple (synthetic and real-world) datasets of varying size, dimensionality, and skew. We find that all approaches benefit considerably from using main memory and parallelization, yet to varying degrees. Our evaluation indicates that, on current machines, scanning should be favored over parallel versions of classical MDIS even for very selective queries

    Design and Evaluation of a Probabilistic Music Projection Interface

    Get PDF
    We describe the design and evaluation of a probabilistic interface for music exploration and casual playlist generation. Predicted subjective features, such as mood and genre, inferred from low-level audio features create a 34- dimensional feature space. We use a nonlinear dimensionality reduction algorithm to create 2D music maps of tracks, and augment these with visualisations of probabilistic mappings of selected features and their uncertainty. We evaluated the system in a longitudinal trial in users’ homes over several weeks. Users said they had fun with the interface and liked the casual nature of the playlist generation. Users preferred to generate playlists from a local neighbourhood of the map, rather than from a trajectory, using neighbourhood selection more than three times more often than path selection. Probabilistic highlighting of subjective features led to more focused exploration in mouse activity logs, and 6 of 8 users said they preferred the probabilistic highlighting mode

    Developing Interaction 3D Models for E-Learning Applications

    Get PDF
    Some issues concerning the development of interactive 3D models for e-learning applications are considered. Given that 3D data sets are normally large and interactive display demands high performance computation, a natural solution would be placing the computational burden on the client machine rather than on the server. Mozilla and Google opted for a combination of client-side languages, JavaScript and OpenGL, to handle 3D graphics in a web browser (Mozilla 3D and O3D respectively). Based on the O3D model, core web technologies are considered and an example of the full process involving the generation of a 3D model and their interactive visualization in a web browser is described. The challenging issue of creating realistic 3D models of objects in the real world is discussed and a method based on line projection for fast 3D reconstruction is presented. The generated model is then visualized in a web browser. The experiments demonstrate that visualization of 3D data in a web browser can provide quality user experience. Moreover, the development of web applications are facilitated by O3D JavaScript extension allowing web designers to focus on 3D contents generation

    A Selectivity based approach to Continuous Pattern Detection in Streaming Graphs

    Full text link
    Cyber security is one of the most significant technical challenges in current times. Detecting adversarial activities, prevention of theft of intellectual properties and customer data is a high priority for corporations and government agencies around the world. Cyber defenders need to analyze massive-scale, high-resolution network flows to identify, categorize, and mitigate attacks involving networks spanning institutional and national boundaries. Many of the cyber attacks can be described as subgraph patterns, with prominent examples being insider infiltrations (path queries), denial of service (parallel paths) and malicious spreads (tree queries). This motivates us to explore subgraph matching on streaming graphs in a continuous setting. The novelty of our work lies in using the subgraph distributional statistics collected from the streaming graph to determine the query processing strategy. We introduce a "Lazy Search" algorithm where the search strategy is decided on a vertex-to-vertex basis depending on the likelihood of a match in the vertex neighborhood. We also propose a metric named "Relative Selectivity" that is used to select between different query processing strategies. Our experiments performed on real online news, network traffic stream and a synthetic social network benchmark demonstrate 10-100x speedups over selectivity agnostic approaches.Comment: in 18th International Conference on Extending Database Technology (EDBT) (2015
    • 

    corecore