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Chapter 1

Introduction

Nearest neighbor search problem is simply defined as follows: find the closest
point to a given query point from a collection of points. When the amount of
data is large, it is needed to construct a data structure that help to retrieve
the nearest neighbor fast and effectually. The nearest neighbor search prob-
lem is important in many applications such as pattern recognition, machine
learning, data mining, data compression, data analysis and signal processing.
For instance, in pattern recognition, the k-nearest neighbor algorithm and it
variation are methods used for classification and regression that use nearest
neighbor search as the core technique.

k-nearest neighbor search also can be served as a content-based search
engine, which is widely used in many different domains such as multimedia,
biology, finance, sensor, etc. For example, for image retrieval problem, the
Content-based Image Retrieval system which find similar images based on vi-
sual content of the input images, such as colors, shapes or texture has showed
better result compared to Text-based Image Indexing which is based on as-
sociated metadata such as keywords, tags and descriptions. These metadata
are often given by users, sometimes could be faked or not much concerned.
In turn, visual contents such as colors, shapes or texture information are
more reliable to identify each image. In other domains, the database and
query object can be DNA sequences in biology, trend curse from stock his-
tory data in finance, sensor network data log, and so on. These kinds of data
are difficult to visualize or add keywords and captions, but suitable for using
content-based search engine.

A straightforward way for this problem is exhaustive search that compares
a query to each point from the database. However, it can not scale up to huge
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data sets which have more than billions points with the ranges of dimension
from ten to millions.

There are many efficient algorithms has been proposed for the case when
the dimension is low (up to about 10) such as kd-trees [6], R-trees [13], SR-
tree or cover-trees [7]. These early proposed tree-based methods can return
accurate results, but they are not time-efficient for data with high dimen-
sional. [29] shown that when the dimensionality exceeds 10, The running
time of these methods grown up in exponential of d (dimension) and be
slower than the exhaustive search.

In many applications, instead of finding the accurate nearest neighbor
that take a lot of time, approximate algorithms are usually used to speed up
the performing in an acceptable accuracy. Typical efficient approximate near-
est neighbor search algorithms for high dimensional data are Locality Sensi-
tive Hashing (LSH) and the randomized kd-forest. Hashing based methods
such as locality sensitive hashing and it variations have been shown scalabil-
ity for high-dimensional data, and hence more suitable for data mining. This
study try to improve LSH algorithm on Euclidean distance space by apply-
ing Principal Component Analysis as an data-learning technique in order to
adapting the distributions of given data sets. Our experiment results shows
our approach clearly outperforms the original LSH.

1.1 Thesis Structures

The rest of thesis is organized as follow:

• In chapter 2, we introduce the nearest neighbor search problem and
give an overview of recent works from the viewpoint of how data/space
partition is given.

• In chapter 3, we will give a brief introduction to the basic Locality
Sensitive Hashing algorithms and it variations.

• Then, in chapter 4, we describe our improving of LSH by hashing on
principal components.

• In chapter 5, we will explain the result of experiments.

• Finally, in chapter 6, we summarize the main idea of the thesis and
give conclusion.

5



Chapter 2

Nearest neighbor search

2.1 Problem Definition

In this thesis we deal with the problem of efficient nearest neighbor search
in metric spaces. The nearest neighbor search problem can be defined as
follows:

Definition 1 (Nearest neighbor search)
Given a set X with n points X = {x1, x2, ..., xn} in a metric space M , con-
struct a data structure such that for any query point q ∈ M , it reports
the point Xnn in X that is closest to q with respect to a metric distance
D : M ×M → R. That is,

D(Xnn, q) ≤ D(xi, q), i = 1, ..., n.

In the rest of this thesis, we focus on the approximate nearest neighbor
problem. The formal definition of the approximate version is as follows:

Definition 2 (c-approximate nearest neighbor)
Given a set X with n points X = {x1, x2, ..., xn} in a metric space M , con-
struct a data structure such that for any query point q ∈ M , it reports all
points p in X that is c-approximate nearest neighbor of q with a probability
guarantee at least 1− δ, where

D(p, q) ≤ cD(Xnn, q)

In practice, we are often interested in finding not only the first closest
neighbor, but top k closest neighbors. This problem is called approximate
k-nearest neighbors search problem.

6



2.2 Distance and Similarity Measurements

For any two points a and b, the lp distance between them is defined as

‖a− b‖s =

(
d∑

i=1

|a− b|p
)1/p

for p > 0; this distance function is often called the lp norm. The typical cases
include p = 2 (the Euclidean distance) or p = 1 (the Manhattan distance).
Hamming distance, which is Manhattan distance in the binary code {0, 1}d.

In this thesis, we refer to use the Euclidean distance, since it is one
of the most appropriate distance metric to many high dimensional feature-
rich data. To simplify the notation, we often omit the subscript 2 that is,
‖a− b‖ = ‖a− b‖2.

2.3 Related Works

Most of nearest neighbor search methods consist of the following two phases:

1. Pre-processing: Partition the data space into regions with some
combinatorial structures (e.g.: tree, hashing, cluster), then construct
an indexing of the dataset to record which points are contained in each
region.

2. Searching: Compute the index of the query point to locate the query
region. Then obtain all data points in that region or expand to query’s
nearby regions as the candidates. Finally re-rank the candidates to
report selected data.

In this section, we review previous nearest neighbor search methods from
the viewpoint of how data partition is given. Most of previous works can
be categorized into two groups of data structures: tree based methods and
hashing based methods.

2.3.1 Tree Based Partition Methods

Tree based nearest neighbor methods use a hierarchical tree (usually binary
tree) as the indexing structure in which the whole space will be divided into
several areas, then each area will be further divided into smaller areas until
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Figure 2.1: kd-tree

some stopping criteria is satisfied (e.g. the number of data points remain in
each area less than a threshold τ). The whole space is present at the root
node, smaller areas is so-called internal nodes and the smallest one where
contains IDs of the data points is so-called leaf node.

The early proposed kd-tree [6] is the simplest one, which constructs a
binary tree by using axis aligned hyperplanes to split the search space along
the axis with the highest variance into two regions containing half of the
points of the parent region. The iterative decomposition are continued until
one point remain in each leaf node. At the searching phase, traversing the
tree from the root to the closest leaf node where the query point belongs
to obtain a first nearest neighbor candidate, and then continue to traverse
next node by backtracking until all candidate nodes that may contain nearest
neighbor have been checked.

The kd-tree data structure is very effective for low dimensional space,
when during the tree exploration many subspaces can be ignored due to be-
ing further away than the best nearest neighbor candidate. The binary tree
structure is close to signal of computer, so it is easy to construct and can re-
turn exact nearest neighbors of the query. However, when the dimensionality
increases, “axis aligned hyperplanes” property required number of interme-
diate nodes are exponential in d. Therefore when searching more and more
nodes of the tree needs to be explored by backtracking, so it showed less
efficient in running time even comparing to linear search.

A modify at the searching stage of the original kd-tree to use it for ap-
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proximate approaching that instead of traversing all necessary nodes [3], the
search stop when it satisfied a “error bound” threshold on the solution ac-
curacy or a “time bound” threshold on the running time for search [5]. [3]
also proposes the use of a priority queue to speed up the search in a tree
by traversing nodes in order of their distance from the query point. This
make the search more efficient by increasing the likelihood of visiting closer
neighbors early and pruning away more further branches.

Other researches try to improve on the way kd-tree partition the space
by some non axis aligned splitting tools, such as PCA-tree [27], random pro-
jection trees [10], vantage point tree (vp-tree) [33], etc. In PCA-tree, the
partitioning hyperplanes is chosen to be perpendicular on the top eigenvec-
tors generated by Principal Component Analysis (PCA) in order to obtain
a better decomposition of the data space. In random projection trees, the
splitting hyperplanes are picked to be random directions on the unit hyper-
sphere. And in vp-tree method, in stead of hyperplanes, the hyper-spheres
are used to partition the data space. More specifically, in each internal node,
selecting a “vantage point” and draw a hyper-sphares with the center as the
vantage point and the radius as a threshold, then the data points are split
into two set, the “near” and “far” points whether they are inside or outside
the hyper-sphere.

In a single kd-tree, if the query point is close to one of the splitting hyper-
plane, it is high probability that the nearest neighbor lies on the other side
of the hyperplane, so that more and more nodes in the tree are need to be
explored. In that case of the approximate search when the tree exploration is
stopped early, the cell with the closest neighbor might not get visited at all.
Multiple randomized kd-trees (or randomized kd-forest), proposed in [26] cre-
ates several different kd-trees with different splitting hyperplanes to improve
the accuracy of the results for using high dimensional data. When the closest
neighbor happens to lie on the other side of hyperplane from the query point,
it’s possible that in other tree with different decomposition these two points
will be partitioned into the same cell. The construction of randomized kd-
trees is almost similar in manner to the classic kd-tree described above, but
instead of splits data on the dimension with the highest variance, the split
dimension is chosen randomly from the top N dimensions with the highest
variance. In the query stage, the search is performed simultaneously in the
multiple trees through a shared priority queue, that is ordered by increas-
ing distance to the decision boundary of each leaf node in the queue, so the
search will visit first the closest leaves from all the trees. Once a data point
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is visited inside one tree, it is marked so that it will not be re-visited from
other trees. The search is stopped when it reaches a determined maximum
number of leaf nodes.

Hierarchical k-means tree [25] is another approach of tree based partition
methods, combining with k-means clustering in order to exploit the natural
structure existing in the data. It is constructed by splitting the data points at
each level into k distinct regions (so-called k clusters) using k-means cluster-
ing, and then recursively applying the same splitting method for the points
in each region, until the number of points in each region is smaller than a
threshold. The searching stage is similar to kd-trees, we might also use a
priority queue to speed up the search.

2.3.2 Hashing Based Partition Methods

Hashing is an indexing method that using a mathematical function to convert
data point from the original large-scale size to shorter fixed-length value or
key which easier to search or interact with. Hashing based nearest neighbor
algorithms build data structure as a hash table, in which the space will be
partitioned to many regions, each entry in the hash table represents one
region and contains all IDs of the data points belong to that region. Those
regions are so-called “buckets”, described by its hash codes computed by the
hash functions. Note that on a hash table, each point in the data space is
mapping to one bucket determined by its own hash codes, while one bucket
could contain one or more items. Items that fall into the same bucket (points
that assigned the same hash codes as the region) would have more or less
sharing properties, so they have high probability to be near-by or similar.
Afterward, one can find near neighbors by hashing query point and retrieving
all elements stored in the bucket containing that point as the candidates.

Locality Sensitive Hashing (LSH) is one of the most popular hashing
based algorithms for performing approximate nearest neighbor search in high
dimensional space. LSH partitions the data space into smaller buckets by
using a family of hash functions (usually geometric functions such as hyper-
planes or lattice) to ensure that nearby objects have higher probability to
fall into the same bucket than far apart objects. It can also be regarded as a
form of probabilistic dimensionality reduction. Variations of LSH algorithms
have been proposed in recent literatures to expand its usage to the cases of
Euclidean space with ls norms (s = 1, 2) [11], for Cosine similarity on Rd [9],
Jaccard for similarity of sets [8], and learned metrics [17], Chi2 distance[12],
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Figure 2.2: Space partition by hash functions

etc.
For instance, Euclidean LSH uses random projection to partition the

space. Data points are projected into k random directions choosing indepen-
dently from Gaussian distribution, and then split into several buckets with
a preset window size. (Figure 2.2)

We can see that both Euclidean LSH and kd-trees indexing methods are
using hyperplanes, but LSH only needs O(logM) hyperplanes to partition
the space to M regions while tree based methods need O(M) hyperplanes.
As a result, hashing based methods are requiring less memory, and making
multiple partitions convenient and practical. Another big advantages of LSH
is data independent (random) partitions. In LSH, the partition structures
are randomly generated, independent of the database points, helps they over-
comes “the curse of dimensionality” in some sense and can usually deal with
high dimensional data quite well. No training of data is required in LSH,
and hence it is very easy to scale up to large data set.

But the data-independent properties also become the lack of LSH. Since
the hash functions in LSH are randomly generated and independent of the
data, it is often not very efficient. And hence many hash tables are often
needed to get a good recall to keep a high precision. This would heavily
increase the requirement of storage, causing problems for very large scale
applications.

Consequently, many resent research has been targeted at improving hash-
ing methods by using various learning techniques to generate data-dependent
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hashing functions: spectral hashing [30] , kernelized LSH [22], learnt binary
embeddings [23], semi-supervised hashing [28], optimized kernel hashing [15]
and complementary hashing [31], etc. But they usually need massive com-
putation to learn the partitions.

This study try to improve locality sensitive hashing algorithm on Eu-
clidean distance space by applying some data-learning technique when design
the hash functions but not seriously increase the computation. Next chapter
we will represent more detail about LSH algorithm on Euclidean distance
space and explain our improving points in chapter 4.

12



Chapter 3

Locality Sensitive Hashing

Locality Sensitive Hashing (LSH) is one of the most popular hashing based
algorithms for performing approximate nearest neighbor search in high di-
mensional space. LSH partitions the data space into smaller buckets by using
a family of hash functions (usually geometric functions such as hyper-planes
or lattice) to ensure that nearby objects have higher probability to fall into
the same bucket than far apart objects. Then, online searching consists of
two steps: (1) hash the query point and retrieves all items belong to its
bucket as potential candidates, and (2) determine the nearest neighbor by
ranking the candidates according to their distances to the query point.

3.1 LSH Definition

The LSH algorithm relies on the existence of locality sensitive hash functions.
Let S be the domain of objects with D be the distance measure between
objects. Let H be a family of hash functions mapping S to some universe U.
The family H is called locality sensitive if it satisfies the following condition.

Definition 3 (Locality sensitive hashing function family)
A function family H = h : S → U is called (r, cr, P1, P2)-sensitive for D if
for any q, p ∈ S

• If D(q, p) ≤ r then PrH [h(q) = h(p)] ≥ P1,

• If D(q, p) > cr then PrH [h(q) = h(p)] ≤ P2.
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To use LSH for approximate nearest neighbor search, we pick c > 1 and
P1 > P2. With these choices, nearby objects (those within distance r) have
a greater chance (P1 vs. P2) of being hashed to the same value than objects
that are far apart (those at a distance greater than cr away)

Several LSH families have been discovered for the use of different distance
functions D. For instance, when the data are binary vectors from {0, 1}d with
Hamming distance, we can use a particularly simple family of functions H
which contains all functions hi from {0, 1}d to {0, 1} such that hi(p) = pi
[16]. Choosing one hash function h uniformly at random from H means
that h(p) returns a random coordinate of p. To confirm the family H is
locality-sensitive, observe that the probability PrH[h(q) = h(p)] is equal to
the fraction of coordinates on which p and q agree. Therefore, P1 = 1−R/d,
while P2 = 1 − cR/d. Since the approximation factor c is always picked
greater than 1, we have P1 > P2.

Other LSH families have been also proposed for Euclidean space with ls
norms (s = 1, 2), for Cosine similarity on Rd [9], or Jaccard for similarity of
sets [8], etc.

3.2 LSH Algorithm

3.2.1 LSH Indexing Method

Using a family of LSH functionsH , we can construct indexing data structures
for similarity search. The basic LSH indexing method works as follows:

• For an integer k, define a function family G = g : S → Uk, and for
g ∈ G, g(v) = (h1(v), ..., hk(v)), where hj ∈ Hfor1 ≤ j ≤ k (i.e., g is
the concatenation of k LSH functions).

• For an integer L, choose g1, ..., gL from G, independently and uniformly
at random. Each of the L functions gi(1 ≤ i ≤ L) is used to construct
one hash table, resulting in L hash tables

This LSH indexing method can further amplify the difference between P1

and P2, by concatenating several functions. This increases the ratio of the
probabilities (given above) that points at different separations will fall into
the same quantization bin, since (P1/P2)

k > (P1/P2).
By concatenating k functions, the probability of the query and the nearest

neighbor are in the same bin will be P k
1 , which decreases as we include more
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functions (increase k). Therefore, performing L independent projections and
pool the neighbors from all of these will ensure that a true near neighbor
could fall into the same buckets at least in one table. Then, by increasing L
we can find the true nearest neighbor with arbitrarily high probability.

3.2.2 Basic Querying Process

To search the nearest neighbor for a query q, we hash the query point and
scan through the buckets g1(q), ..., gL(q) to retrieve the points stored in them.
After retrieving the points, we compute their distances to the query point,
and report any point that is a valid answer to the query.

Some optional optimizations can be used in query process.

• In practice, we can stop processing a query as soon as the number of
reported points is more than a threshold L′ to keep time efficiency.

• A near neighbor might be encountered and be computed the distance
to the query point more than once because it appears in more than one
of the buckets g1(q), ..., gL(q). We can skip these repeated points by
making a tracking vector ei of the points for which we already computed
the distance ‖q − xi‖, and not compute the distance a second time
(ei = 1 if we already encountered the point xi ∈ X in an earlier bucket
and computed the distance ‖q − xi‖), and ei = 0 otherwise). Another
trick is retrieving candidates set is the union of all query’s buckets
before computing the distance.

3.3 Euclidean LSH and Its Variations

In this section, we will mainly introduce LSH for Euclidean space with l2
norm distance, which is more popular in practice, its variations and other
ideas that promising to apply into Euclidean space.

3.3.1 Euclidean LSH with l2 norm distance

For Euclidean space with, Datar et al. [11] have proposed LSH families for
ls norms (s = 1, 2), based on s-stable distributions. Here, each hash function
is defined as:

ha,b(v) =

⌊
a · v + b

W

⌋
15



where a is a d-dimensional random vector with entries chosen independently
from a s-stable distribution and b is a real number chosen uniformly from
the range [0,W ]. Each hash function ha,b : Rd → Z maps a d-dimensional
vector v onto the set of integers. Due to the linearity of the dot product,
the difference between two projections |a · p− a · q| has a magnitude whose
distribution is proportional to ‖p− q‖ therefore, P1 > P2.

Increasing the quantization bucket width W will increase the number of
points that fall into each bucket. To obtain our final nearest neighbor result
we will have to perform a linear search through all the points that fall into
the same bucket as the query, so varying W effects a trade-off between a
larger table with a smaller final linear search, or a more compact table with
more points to consider in the final search. On the other hand, if k is large
then P k

1 is small, which means that L must be sufficiently large to ensure
that a near neighbor collides with the query point at least once.

The basic LSH scheme has several drawbacks. Firstly, it is difficult to
choose parameters such as k,W that suitable for a given dataset and dif-
ferent queries, which may result in large deviation in runtime and quality.
Secondly, in practice it needs a large number of hash tables L to achieve high
recall ratio and low error ratio and this results in high selectivity with more
memory-demanding. These drawbacks can affect the efficiency and quality
of basic LSH-based algorithms on large datasets. Many techniques have been
proposed to overcome some of the drawbacks of the basic LSH algorithm.

3.3.2 Variations of Euclidean LSH

Multi-probe LSH methods [24] [21] are proposed to decrease the need of using
large number of hash tables. The idea of multi-probe LSH is if the nearest
neighbor does not fall into the query’s bucket, it would fall into the near-by
buckets which hash code is different in {−1, 0,+1}. Multi-probe LSH [24]
systematically probes the buckets near the query points in a query-dependent
manner, instead of only probing the bucket that contains the query point.
It can obtain higher recall ratio with fewer hash tables, but may result in
larger selectivity from additional probes. The different approaches mainly
differ in terms of how they select the multiple buckets per hash table. Joly
et al. [21] improve the multi-probe LSH by using prior information collected
from sampled dataset.

Bawa et al. [4] proposed the LSH Forest for Hamming space, which is a
data structure representing the hash table as a prefix tree. The prefix trees
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can hold hash keys of variable length, allowing the LSH forest to adapt better
to the data, compared to the classic LSH for which the key length parameter
needs to be hand tuned. Jegou et al. [18] applied similar idea into Euclidean
space, which trades memory against accuracy by defining a larger pool of M
hash functions but use only for the most relevant ones likely to return the
nearest neighbors on a per-query basis.

In [1] Andoni and Indyk proposed a near-optimal LSH that uses a Leech
lattice for the geometric hashing instead of one-dimensional random pro-
jections. The idea is that the Leech lattices (24 dimensions) offer better
quantization properties for the mean square error dissimilarity measure used
in Euclidean spaces. But it requires significantly calculating operations to
decoding each lattice point. Jegou et al.[18] proposed using another lat-
tice structure (E8 lattice with 8 dimensions) that still excellent quantization
properties but more efficient decoding compare to Leech lattice.

Pauleve et al. [24] present k-means Locality Sensitive Hashing scheme
that combine k-means clustering with LSH. The idea is instead of building
L hash tables using some locality sensitive hash family, they generate L dif-
ferent k-means clustering for each table with different set of centroids. At
search time, the nearest centroid for each of the L k-means tables is found
for the query point. The data points assigned to these same centroids are
then retrieve as the candidates. The indexing scheme and query processing
is similar to the basis scheme of LSH. Using k-means clustering as parti-
tion method makes the hashing process adaptive to datasets with different
distributions.

Zixiang et al. [32] proposed the idea of using hierarchical and non-uniform
bucket partitioning based on the distribution of points to handle the non-
homogeneous datasets with a specific video similarity measurement. The
hierarchical LSH in [32] has a prospect that be able to build a data-dependent
structure that learn well the distribution of the input dataset that can be
apply to other metric space or distance measurement.
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Chapter 4

Our works:
Locality Sensitive Hashing on
Principal Components

4.1 Discussion

Locality sensitive hashing (LSH) algorithm has prominent merit is that they
overcome “the curse of dimensionality” in some sense and can usually deal
with high dimensional data quite well. Moreover, it makes multiple partitions
convenient and practical but only needs O(logM) partition functions to cre-
ate M regions, requiring less memory. However, since the partitions of LSH
are randomly generated (data independent), it may not be optimal/high-
quality for all kind of datasets. Therefore, our study try to improve LSH
algorithm on Euclidean distance space by applying some data-learning tech-
nique when design the hash functions but not seriously increase the compu-
tation.

The initial ideas is that instead of using random projection, we could find
another way to choose a better projecting direction that be able to adapt the
data.

Intuitively, the dot product (projection) using in Euclidean LSH can be
express geometrically as follows:

a · v = ‖a‖ ‖v‖ cos(∠(a,v))

The magnitude of the dot product is proportional to the length of two vectors
and the angle between them. For any two points p,q the distance between
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Figure 4.1: Principle Component Analysis (PCA)

their projections is

a · p− a · q = a · (p− q) = ‖a‖ ‖p− q‖ cos(∠(a,p− q))

Therefore, two points that are close together are also close together when
projected onto any direction. This is true no matter how we rotate the pro-
jecting direction. Two other points that are far apart will be close together
on the projection, only happen with some orientations when cos(∠(a,p−q))
is approach to zero. This point of view orients us working on how to choosing
a better direction for projection compare to the random vectors of Euclidean
LSH. Projection on the top highest variance of PCA eigenvectors is this kind
of thing.

4.2 Locality Sensitive Hashing on Principal

Components

4.2.1 Principal Component Analysis

Principal Component Analysis (PCA) is known as a dimension reduction
procedure that uses an orthogonal transformation to generate the principle
components from a set of data. It rotates the original data space into a new
coordinate system in which the axis are arranged in order of variance from
largest to smallest. Then, we can omit some axis with small value of variance
without losing the scaling information of data. (Figure 4.1)

This transformation is defined in such that the first principal component
has the largest possible variance, then the next largest variance come to the
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second coordinate under the constraint that it is orthogonal to the preceding
component, and so on. The number of principal components is less than
or equal to the number of original variables. The eigenvectors of PCA are
always an uncorrelated orthogonal unit set of vectors.

PCA can be performed via Eigenvalue Decomposition (EVD) of a data
covariance matrix or Singular Value Decomposition (SVD) of the data matrix.

In the case of using eigenvalue decomposition, the covariance matrix com-
putation costs O(d2n) floating-point operations (flops), its eigenvalue decom-
position is O(d3). So, the complexity of PCA is O(d2n+ d3) for a n× d data
matrix, where n is number of data points and d is the dimension size. Each
row represents a data point, and each of the d columns represents a feature
of data. When n ≥ d, the total complexity of PCA is O(d2n).

In the case of using singular value decomposition, the total complexity of
Exact SVD is almost same as using eigenvalue decomposition O(d2n), while
the first step reducing the data matrix into bidiagonal form needs O(d2n)
flops and the second step making the decomposition needs O(d3). There
are some technique for computing an approximate SVD such as Truncated
SVD that computes only the v largest singular values and associated singular
vectors of a data matrix. This can be much quicker and more economical than
the exact SVD. The cost of this approach is typically O(vdn) flops. Halco et
al. in [14] presented Randomized SVD that using only O(nd log(v)+(n+d)v2)
flops is fastest scheme as we know.

4.2.2 Hashing on Principle Components

Projection on the top PCA eigenvectors with highest variance can adapt the
distribution of the whole points from the set of data. Using the top PCA
eigenvectors as projecting direction does not change the linearity attitude
of the dot product explained in section 4.1, then the difference between two
image points |h(p)−h(q)| has a magnitude whose distribution is proportional
to ‖p− q‖, therefore it satisfies the condition P1 > P2 in the Definition 3
about LSH family. More clearly, projection on highest variance components
does not increase the probability of two nearby points would fall into the
same bucket P1, but it can decrease the probability P2 for two far away
points be hash to one bucket. Thus, apply PCA to LSH could bring better
space partition than random projection.

The preprocessing algorithm of LSH on Principle Components (PCALSH)
can be rewrite as follows:
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1. Doing PCA for all points in the dataset and choosing top V eigenvec-
tors.

2. Construction of L hash functions g1, ..., gL by for each gj concatenating
k LSH functions gj(v) = (h1,j(v), ..., hk,j(v)), with hi,j(i = 1, ...k, j =
1, ..., L) is defined as follows:

ha,b(v) =

⌊
a · v + b

W

⌋
where a is choosing randomly from top V eigenvectors and b is a real
number chosen uniformly from the range [0,W ]

3. Construct L hash tables, where each table contains all of data points
hashed using the function g1, ..., gL

Morever, hashing on principle components has been shown other beau-
tiful properties. Firstly, the data space can be partition into well-balanced
buckets since PCA component is orthogonal unit vectors. Figure 4.2 is an
example of the regions obtained using projection on orthogonal unit vec-
tors and projection on random vectors. Secondly, the orthogonal properties
makes it is easy to calculate real distance from one query point to bucket
boundary that can be used to improve the multi-probe looking up on the
query process.

By the way, one issue of PCALSH is how to choose the number of top
principal components V . The number of PCA components limited in the
number of dimension d, but not all of them are principal. For example,
for dataset SIFT1M included 1,000,000 items with 128 dimensions of images
SIFT description, using only the first 50 principal components is correlated
with more than 90 percents of the real distances. Therefore, we can not
generate independently and uniformly k × L random vectors like Euclidean
LSH.

Note that, in order to construct L hash tables, each table needs k distinct
hash keys, it’s no need to prepare L ∗ k distinct hash functions. We can
repeatedly use some hash functions on different hash table. In the original
E2LSH Package [2], Indyk et al. used only O(k

√
L) distinct keys instead

of L ∗ k in order to reduce the total computing time for hash functions. It
makes the function gj are not totally independent, but still guarantees for
the success probability of the approximate problem.
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Figure 4.2: Fundamental regions obtained using projection on Orthogonal
unit vector (a) and random vector (b)

For our PCALSH: Since the number of principal components is limited,
we propose to use a smaller number of top components: V = O(k k

√
L). For

instance, when L = 20, k = 10, the value of V is 14; when L = 100, k = 20 the
value of V is only 25. This small number of V still guarantees L < V !

k!(V−k)! ,
that means there is always enough different combination of k distinct hash
keys for construction L tables.

We will compare PCALSH with different number of principal components
in experiment 5.3.1.

4.2.3 Time complexity of PCALSH indexing process

The time cost of a LSH indexing process consists of four parts as follows:

1. Generating hash functions parameters

• For Euclidean LSH, generating L ∗ k independent d dimension-
vectors randomly from Gaussian distribution cost O(dkL)
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• For PCALSH, calculating exact PCA with all eigenvectors cost
as most O(nd2) flops. It is difficult to scale up to very high-
dimensional datasets.

Since our PCALSH needs only small number of V principal com-
ponents to construct L hash tables, we implemented an approx-
imate PCA using the Randomized SVD as given in [14] requires
only O(nd log V ) flops.

2. Calculating hash keys

• For Euclidean LSH, in order to construct L tables, each table
includes k keys, the time consuming of calculating hash keys is
O(ndkL)

• For PCALSH, because some PCA’s eigenvectors are reused on
different tables, we can reduce the time consuming of calculating
hash keys as follows:

(a) Firstly, making the projection of all data points into V prin-
cipal components needs O(ndV ),

(b) Then calculating hash keys in O(nLk) flops.

The total time cost of calculating hash keys is O(ndV + nLk)

3. Classifying into distinct buckets

This step is the same in both Euclidean LSH and PCALSH, it costs at
most O(n log(n)k)

The total time complexity of our PCALSH indexing process is

O(nd log(V ) + ndV + nLk + n log(n)k)

and the total time complexity of Euclidean LSH indexing is

O(dkL+ ndkL+ n log(n)k)

In most of case, we have log(n) ≤ k ≤ V ≤ d ≤ n and L ≤ d. Therefore, the
time complexity of PCALSH indexing can be rewritten as O(ndV ) and the
time complexity of Euclidean LSH indexing is O(ndkL).

If we choose V = O(k k
√
L), then the time complexity of PCALSH even

smaller than the time complexity of the Euclidean LSH.
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4.3 Orthogonal Locality Sensitive Hashing with

QR decomposition

As explained before, PCALSH have two main beautiful properties. The
first one is projecting on top eigenvectors can adapting the distribution of
data. The second is orthogonal unitary properties of the eigenvectors. In
order to confirm the efficiency of the second property, we design another
algorithm so-called Orthogonal Locality Sensitive Hashing that projection
onto sets of orthogonal random vectors. There are some methods to generate
a set of orthogonal vectors such as singular value decomposition and QR
decomposition. In this paper, we choose to use QR decomposition since it is
simpler and faster in practice.

The algorithm of generating k orthogonal random vectors as follows:

• First, generate a set of k random vectors independently from Gaussian
distribution, denote A = [a1, ..., ak]. Then A is a d× k matrix.

• Using QR decomposition to generate a uniform random rotation matrix
Q = [q1, ...,qd] from random matrix A, such that A = QR

• Taking the first k column of matrix Q as a set of k independent orthog-
onal random vectors [q1, ...,qk]

The set of k independently orthogonal random vectors [q1, ...,qk] then
can be used to construct a hash function g(v) = (h1(v), ..., hk(v)) In order to
construct L tables with independent function gj(v), if L× k is smaller than
dimension size d, we can produce L × k independent orthogonal random
vectors using QR decomposition, if not, repeating QR decomposition until
perceive enough L set of k orthogonal random vectors.

Then, the indexing algorithm of Orthogonal Locality Sensitive Hashing
is completely the same as Euclidean LSH.

4.3.1 QR factorization

If A is m× n and left-invertible then it can be factored as

A = QR

where:
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• R is m× n and upper triangular with rii > 0

• Q is m×m and orthogonal (QTQ = I)

There are several ways of computing the QR decomposition, such as the
Gram-Schmidt process, Householder transformations and Givens rotations.
It can be computed in O(mn2).
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Chapter 5

Experiments

5.1 Experimental Setup

5.1.1 Evaluation Datasets

We perform our experiments on SIFT1M dataset which is particularly gener-
ated for evaluating the quality of approximate nearest neighbors search [20]
1. The SIFT1M dataset included 1,000,000 feature vectors of 128 dimensions
local SIFT descriptors of images. The elements of SIFT feature vectors are
integers in the range [0, 255]. The query subset is generated from distinct
source of image with dataset. These datasets are extracted from the publicly
available INRIA Holidays dataset and Flickr images [19].

5.1.2 Evaluation Benchmarks

For each descriptor data type, we only picked 100 objects from query subsets
as query object. For each query object, the ground truth is defined to be the
query object K nearest neighbors based on the Euclidean distance of their
feature vectors calculated by exhaustive search. Unless otherwise specified,
K is 50 in our experiments. We mainly compare the quality and efficiency
of our PCALSH and Orthogonal LSH with the original E2LSH.

There are two parameters for evaluating the search quality.
Firstly, the search quality is measured by recall: Given a query object q,

let I (q) be the set of ideal answers (i.e., the K nearest neighbors of q), let

1Downloaded from http://corpus-texmex.irisa.fr/
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A(q) be the set of actual answers, then

recall =
|A(q) ∩ I(q)|
|I(q)|

Note that we do not need to consider precision here, since all the candidate
objects will be ranked based on their Euclidean distances to the query object
and only the top K candidates will be returned.

Secondly, the quality of approximate nearest neighbor search will be pre-
sented in terms of effective error ratio calculated as follow:

error =
1

|Q|K
∑
q∈Q

K∑
k=1

dLSHk

dk∗

where dLSHk
is the k-th nearest neighbor retrieved by a LSH method, and

dk∗ is the true k-th nearest neighbor. In other words, it measures how close
the distances of the K nearest neighbors found by LSH are compared to the
exact K nearest neighbors distances. High recall and very small error ratio
are expected for a good nearest neighbor search algorithm.

In order to confirm the time complexity of indexing process of our PCALSH
and E2LSH that explained in section 4.2.3, we measure running time on the
indexing process that construct table with the same number of buckets.

Both E2LSH and our PCALSH use the same scheme on query searching
process, in which most of runtime is used for doing linear search on the
candidates set. Therefore, instead of measure the real running time depends
on the system status, we will use selectivity to measure the runtime cost of
the short-list search:

selectivity =
|A(q)|
|S|

where |S| is the size of the dataset and A(q) is the candidates set. The
searching methods with smaller selectivity is faster in real running time and
more efficient in practice.

All performance measures are averaged over the 100 queries. Also, since
the hash functions are randomly picked, each experiment is repeated 10 times
and the average is reported.
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5.1.3 Parameters setting

The main parameters of our proposed technique PCALSH and QRLSH are
similar to the common E2LSH parameters L, k and w. The effect of the
common parameters L, k and W on whole three algorithms are generalized
in Table 5.1.

Table 5.1: The effect of the common parameters L, k and W
L ↑ k ↑ w ↑

Selectivity ↑ ↓ ↑
Recall ↑ - ↑
Memory usage ↑ ↑ -

In practice, using large number of k and L to guarantee the search quality
is not recommended since it is the trade-off to the space requirement and
running time. Therefore, we limit the value of L ≤ 20, k ≤= 15 for all
experiments.

In PCALSH, there is a new parameter V , number of top PCA components

that choosing for projection. We use different value of V (
⌈
k
√
L
⌉

= 45,⌈
k 3
√
L
⌉

= 27 and
⌈
k k
√
L
⌉

= 14) and compare the effect to our PCALSH.

5.2 Experimental results

There are four experiments that designed as follows:

1. Experiment 1: Quality comparison of PCALSH and E2LSH

With the fixed value L = 20, k = 10, we increase the window size W
gradually which will result in selectivity in an ascending order and
observe the behaviors of recall and error ratio.

2. Experiment 2: Independent property of hash tables in PCALSH

We fixed the value of k = 10 and increase the number of hash ta-
bles L gradually from 1 to 20 and trace the changes of the recall and
selectivity of PCALSH compare with E2LSH. The window size W is
choosing different for each algorithm in order to observe the variation
clearly (W = 800 for E2LSH and W = 150 for PCALSH).
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3. Experiment 3: Orthogonal property

With fixed the value of L = 20, k = 10, we increase the window size
W gradually which will result in selectivity in an ascending order and
observe the behaviors of recall and error ratio of Orthogonal QRLSH
compare to E2LSH and PCALSH.

4. Experiment 4: Running time of PCALSH indexing process

We measure running time on the indexing process that by fixing the
value of L, k and choosing appropriate value of W for PCALSH and
E2LSH in order to construct tables with almost same number of buckets
(eg.:W = 700 for E2LSH and W = 123 for PCALSH).

5.2.1 Experiment 1: Quality comparison of PCALSH
and E2LSH

Figure 5.1 and 5.2 show the varying of recall and error ratio belong to the
same selectivity for Euclidean LSH and our PCALSH with different setting
of V .

Figure 5.1: Recall comparison of PCALSH and E2LSH by varying bucket’s
window size W

We come up the following facts from the results:
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Figure 5.2: Error ratio comparison of PCALSH and E2LSH by varying
bucket’s window size W

Firstly, with the same selectivity, using top 14, 27 of PCA returns higher
recall and smaller error ratio compare to E2LSH. Especially, hashing with
top 14 PCA components (setting V = k k

√
L) showed clearly outperforms

the original E2LSH. From another point of view, in order to retrieve a de-
mand recall, PCALSH can use smaller selectivity than E2LSH (for instance,
over 90% of the grouthtruth, PCALSH using top 14 components retrieve
selectivity = 0.05 equal 5% of the dataset as the candidates set for check-
ing by the linear search, while E2LSH needs to check more than 20% of the
whole dataset, that means PCALSH is 4 times faster than E2LSH for the
query search time).

Secondly, consider about the effect of different number of top PCA com-
ponents V into performance of PCALSH, using smaller value of V showed
better result compare to the large one. The reason is that the importance of
the principal components is significantly change with the variation of vari-
ance in decending order. Therefore, hashing on the rearward due to less
effective than hashing on the frontal components.
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Figure 5.3: Independent property comparison of PCALSH and E2LSH

5.2.2 Experiment 2: Independent property of hash ta-
bles in PCALSH

One significant change of our PCALSH algorithm that different to the orig-
inal E2LSH is using small number of hashing directions to concatenate L
hash functions g1, ..., gL instead of L ∗ k independent random hash functions
of E2LSH. In this case, the functions gj are not totally independent as in
E2LSH. Therefore, it is needed to make an observation on the behavior of
PCALSH when changing the number of hash tables.

In this experiment, we fixed the value of k = 10 and increase the number
of hash tables L gradually from 1 to 20 and trace the changes of the recall
and selectivity of PCALSH compare with E2LSH. For PCALSH, we use top
14 PCA components (setting V = k k

√
L) to construction 20 hash tables.

And for E2LSH, we generate 200 distinct random vectors from Gaussian
distribution to construction 20 independent hash tables. The window size
W is choosing different for each algorithm in order to observe the variation
clearly (W = 100 for E2LSH and W = 150 for PCALSH).

The results are showed in Figure 5.3. We can see that the selectivity of
PCALSH are extremely smaller than E2LSH, but still linear increasing with
the number of hash tables L. It proves that our indexing method with small
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number of hash directions (setting V = k k
√
L) is able to guarantee the inde-

pendent property of L hash functions g1, ..., gL. It is very important property
to help our algorithm be scalable to other dataset with higher dimensions.

5.2.3 Experiment 3: Orthogonal LSH

With fixed the value of L = 20, k = 10, we increase the window size W
gradually which will result in selectivity in an ascending order.

Figure 5.4 showed that the Orthogonal properties of QRLSH cannot im-
prove the search quality compare to the original E2LSH. While in PCALSH,
hashing on top highest variance components which adapting the distribution
of data is the most important properties cause its out performance.

Figure 5.4: Quality comparison of QRLSH and E2LSH, PCALSH

5.2.4 Experiment 4: Indexing time comparison

In section 4.2.3, we have analyzed the time complexity of PCALSH index-
ing process is O(ndV ), while the time complexity of E2LSH indexing is
O(ndkL). It mean that when we choose V = O(k k

√
L), then the running

time of PCALSH indexing even smaller than E2LSH.
In this experiment, by fixing k = 10 and choosing appropriate value of

W for PCALSH and E2LSH in order to construct tables with almost same
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number of buckets (W = 700 for E2LSH and W = 123 for PCALSH) ,
we confirm the running time of indexing process PCALSH and E2LSH to
construct L = 1, 5, 10 and 20 tables.

The result are given in Table 5.2. It showed that the time complexity of
PCALSH is really reduced and more efficient than E2LSH.

Table 5.2: Indexing time comparison of PCALSH and E2LSH
Number of tables E2LSH PCALSH

1 2.15s 1.93s
5 7.93s 4.38s
10 16.23s 7.66s
20 32.28 13.46s
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Chapter 6

Conclusion

We prerented a new data-dependent hashing method that projection on the
top PCA eigenvectors with highest variance instead of using random vectors.
Our PCALSH is able to adapt the distributions of given data sets, thus lead
to better space partition than random projection. By using small number
V = O(k k

√
L) top principal components which are generated by Randomized

SVD, we reduce time complexity of PCALSH to O(ndV ), and hence more
suitable for large scale data. Our experiment results has showed our approach
with small enough value of V clearly outperforms the original LSH. We also
confirmed the effect of hashing on the orthogonal unit vectors by Orthogonal
LSH, and conclude that the orthogonal properties is not important in Locality
Sensitive Hashing methods.

For the future works, we need to study more about the behaviors of
PCALSH by implement on other dataset with higher dimension size with
several value in parameter setting. It is possible to combine PCALSH with
multi-probe LSH, E8-lattice LSH, hierarchical LSH. Multi-probe querying
on PCALSH does not need to construct a lot of tables, hence reduce mem-
ory usage, PCALSH with E8-lattice might offer better quantization than
using projection, and PCALSH with hierarchical structure could adapt the
distribution in each dataset. Therefore, we want to developing a full Near-
est Neighbor Search package based on PCALSH and its variation with pa-
rameters auto-tuning that is comparable with state-of-the-art ANNs library
FLANN for both search quality and time-efficiency.
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