8 research outputs found

    Analytical solutions forfuzzysystem using power series approach

    Get PDF
    The aim of the present paper is present a relatively new analytical method, called residual power series (RPS) method, for solving system of fuzzy initial value problems under strongly generalized differentiability. The technique methodology provides the solution in the form of a rapidly convergent series with easily computable components using symbolic computation software. Several computational experiments are given to show the good performance and potentiality of the proposed procedure. The results reveal that the present simulated method is very effective, straightforward and powerful methodology to solve such fuzzy equations

    A Text Recognition Algorithm Based on a Dual-Attention Mechanism in Complex Driving Environment

    Get PDF
    In response to many problems such as complex background of text recognition environment, perspective distortion, shallow handwriting, and mixed Chinese and English characters, we have designed an OCR algorithm framework with features such as landmark extraction and correction, image enhancement, text detection, and text recognition. We have designed a DBNet based on dual attention mechanism and content-aware upsampling. We have also designed a text recognition module incorporating the central loss CRNN + CTC to improve content awareness. Experimental results show that the improved text detection network in this paper has increased accuracy by 5.09%, recall by 2.12%, and F-score by 3.46% on the ICDAR2015 dataset. The text recognition network has improved the accuracy of recognizing Chinese and English characters by 1.2%

    Dynamics of neural fields with exponential temporal kernel

    Full text link
    Various experimental methods of recording the activity of brain tissue in vitro and in vivo demonstrate the existence of traveling waves. Neural field theory offers a theoretical framework within which such phenomena can be studied. The question then is to identify the structural assumptions and the parameter regimes for the emergence of traveling waves in neural fields. In this paper, we consider the standard neural field equation with an exponential temporal kernel. We analyze the time-independent (static) and time-dependent (dynamic) bifurcations of the equilibrium solution and the emerging Spatio-temporal wave patterns. We show that an exponential temporal kernel does not allow static bifurcations such as saddle-node, pitchfork, and in particular, static Turing bifurcations, in contrast to the Green's function used by Atay and Hutt (SIAM J. Appl. Math. 65: 644-666, 2004). However, the exponential temporal kernel possesses the important property that it takes into account the finite memory of past activities of neurons, which the Green's function does not. Through a dynamic bifurcation analysis, we give explicit Hopf (temporally non-constant, but spatially constant solutions) and Turing-Hopf (spatially and temporally non-constant solutions, in particular traveling waves) bifurcation conditions on the parameter space which consists of the coefficient of the exponential temporal kernel, the transmission speed of neural signals, the time delay rate of synapses, and the ratio of excitatory to inhibitory synaptic weights.Comment: 25 pages, 8 Figures, 44 Reference

    Integrated computational intelligent paradigm for nonlinear electric circuit models using neural networks, genetic algorithms and sequential quadratic programming

    Full text link
    © 2019, Springer-Verlag London Ltd., part of Springer Nature. In this paper, a novel application of biologically inspired computing paradigm is presented for solving initial value problem (IVP) of electric circuits based on nonlinear RL model by exploiting the competency of accurate modeling with feed forward artificial neural network (FF-ANN), global search efficacy of genetic algorithms (GA) and rapid local search with sequential quadratic programming (SQP). The fitness function for IVP of associated nonlinear RL circuit is developed by exploiting the approximation theory in mean squared error sense using an approximate FF-ANN model. Training of the networks is conducted by integrated computational heuristic based on GA-aided with SQP, i.e., GA-SQP. The designed methodology is evaluated to variants of nonlinear RL systems based on both AC and DC excitations for number of scenarios with different voltages, resistances and inductance parameters. The comparative studies of the proposed results with Adam’s numerical solutions in terms of various performance measures verify the accuracy of the scheme. Results of statistics based on Monte-Carlo simulations validate the accuracy, convergence, stability and robustness of the designed scheme for solving problem in nonlinear circuit theory

    Using memetic algorithm for robustness testing of contract-based software models

    Get PDF
    Graph Transformation System (GTS) can formally specify the behavioral aspects of complex systems through graph-based contracts. Test suite generation under normal conditions from GTS specifications is a task well-suited to evolutionary algorithms such as Genetic and Particle Swarm Optimization (PSO) metaheuristics. However, testing the vulnerabilities of a system under unexpected events such as invalid inputs is essential. Furthermore, the mentioned global search algorithms tend to make big jumps in the system’s state-space that are not concentrated on particular test goals. In this paper, we extend the HGAPSO approach into a cost-aware Memetic Algorithm (MA) by making small local changes through a proposed local search operator to optimize coverage score and testing costs. Moreover, we test GTS specifications not only under normal events but also under unexpected situations. So, three coverage-based testing strategies are investigated, including normal testing, robustness testing, and a hybrid strategy. The effectiveness of the proposed test generation algorithm and the testing strategies are evaluated through a type of mutation analysis at the model-level. Our experimental results show that (1) the hybrid testing strategy outperforms normal and robustness testing strategies in terms of fault-detection capability, (2) the robustness testing is the most cost-efficient strategy, and (3) the proposed MA with the hybrid testing strategy outperforms the state-of-the-art global search algorithms
    corecore