97,924 research outputs found

    Designing Software Architectures As a Composition of Specializations of Knowledge Domains

    Get PDF
    This paper summarizes our experimental research and software development activities in designing robust, adaptable and reusable software architectures. Several years ago, based on our previous experiences in object-oriented software development, we made the following assumption: ‘A software architecture should be a composition of specializations of knowledge domains’. To verify this assumption we carried out three pilot projects. In addition to the application of some popular domain analysis techniques such as use cases, we identified the invariant compositional structures of the software architectures and the related knowledge domains. Knowledge domains define the boundaries of the adaptability and reusability capabilities of software systems. Next, knowledge domains were mapped to object-oriented concepts. We experienced that some aspects of knowledge could not be directly modeled in terms of object-oriented concepts. In this paper we describe our approach, the pilot projects, the experienced problems and the adopted solutions for realizing the software architectures. We conclude the paper with the lessons that we learned from this experience

    The role of career adaptability in skills supply

    Get PDF

    A Framework for Evaluating Model-Driven Self-adaptive Software Systems

    Get PDF
    In the last few years, Model Driven Development (MDD), Component-based Software Development (CBSD), and context-oriented software have become interesting alternatives for the design and construction of self-adaptive software systems. In general, the ultimate goal of these technologies is to be able to reduce development costs and effort, while improving the modularity, flexibility, adaptability, and reliability of software systems. An analysis of these technologies shows them all to include the principle of the separation of concerns, and their further integration is a key factor to obtaining high-quality and self-adaptable software systems. Each technology identifies different concerns and deals with them separately in order to specify the design of the self-adaptive applications, and, at the same time, support software with adaptability and context-awareness. This research studies the development methodologies that employ the principles of model-driven development in building self-adaptive software systems. To this aim, this article proposes an evaluation framework for analysing and evaluating the features of model-driven approaches and their ability to support software with self-adaptability and dependability in highly dynamic contextual environment. Such evaluation framework can facilitate the software developers on selecting a development methodology that suits their software requirements and reduces the development effort of building self-adaptive software systems. This study highlights the major drawbacks of the propped model-driven approaches in the related works, and emphasise on considering the volatile aspects of self-adaptive software in the analysis, design and implementation phases of the development methodologies. In addition, we argue that the development methodologies should leave the selection of modelling languages and modelling tools to the software developers.Comment: model-driven architecture, COP, AOP, component composition, self-adaptive application, context oriented software developmen

    Learning requirements engineering within an engineering ethos

    Get PDF
    An interest in educating software developers within an engineering ethos may not align well with the characteristics of the discipline, nor address the underlying concerns of software practitioners. Education for software development needs to focus on creativity, adaptability and the ability to transfer knowledge. A change in the way learning is undertaken in a core Software Engineering unit within a university's engineering program demonstrates one attempt to provide students with a solid foundation in subject matter while at the same time exposing them to these real-world characteristics. It provides students with a process to deal with problems within a metacognitive-rich framework that makes complexity apparent and lets students deal with it adaptively. The results indicate that, while the approach is appropriate, student-learning characteristics need to be investigated further, so that the two aspects of learning may be aligned more closely

    Learning Leaders: a multi-method evaluation, final report

    Get PDF
    This report investigates findings arising from a variety of forms of feedback on Cumbria Partnership Foundation Trust’s “Learning Leaders” Programme (henceforth LLP) running from 2012-2013
    • 

    corecore