75 research outputs found

    Learning as a Nonlinear Line of Attraction for Pattern Association, Classification and Recognition

    Get PDF
    Development of a mathematical model for learning a nonlinear line of attraction is presented in this dissertation, in contrast to the conventional recurrent neural network model in which the memory is stored in an attractive fixed point at discrete location in state space. A nonlinear line of attraction is the encapsulation of attractive fixed points scattered in state space as an attractive nonlinear line, describing patterns with similar characteristics as a family of patterns. It is usually of prime imperative to guarantee the convergence of the dynamics of the recurrent network for associative learning and recall. We propose to alter this picture. That is, if the brain remembers by converging to the state representing familiar patterns, it should also diverge from such states when presented by an unknown encoded representation of a visual image. The conception of the dynamics of the nonlinear line attractor network to operate between stable and unstable states is the second contribution in this dissertation research. These criteria can be used to circumvent the plasticity-stability dilemma by using the unstable state as an indicator to create a new line for an unfamiliar pattern. This novel learning strategy utilizes stability (convergence) and instability (divergence) criteria of the designed dynamics to induce self-organizing behavior. The self-organizing behavior of the nonlinear line attractor model can manifest complex dynamics in an unsupervised manner. The third contribution of this dissertation is the introduction of the concept of manifold of color perception. The fourth contribution of this dissertation is the development of a nonlinear dimensionality reduction technique by embedding a set of related observations into a low-dimensional space utilizing the result attained by the learned memory matrices of the nonlinear line attractor network. Development of a system for affective states computation is also presented in this dissertation. This system is capable of extracting the user\u27s mental state in real time using a low cost computer. It is successfully interfaced with an advanced learning environment for human-computer interaction

    Support Vector Machines for Human Face Detection: A Review

    Get PDF
    The computer vision drawback of face detection has over the years become a standard high-requirements benchmark for machine learning ways. Within the last decade, extremely efficient face detection systems are developed that extensively use the character of the image domain to attain correct time period performance. However, the effectiveness of such systems wouldn't be potential while not the progress within the underlying machine learning and classification ways. Now the research area of face recognition technology is much advanced because the research in this area has been conducted for more than 30 years. The main reason for the popularity of face recognition is that it can be used in the different fields like identity authentication, access control and so on. Support vector machine learning may be a comparatively recent methodology that gives a decent generalization performance. Like alternative ways, SVM learning has been applied to the task of face detection, wherever the drawbacks of the technique became evident. Analysis that specializes in accuracy found that competitive performance is feasible however training on adequately giant datasets is difficult. Others tackled the speed issue and whereas varied approximation ways created interactive response times potential, those usually came at a worth of reduced accuracy

    Out-of-plane action unit recognition using recurrent neural networks

    Get PDF
    A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of requirements for the degree of Master of Science. Johannesburg, 2015.The face is a fundamental tool to assist in interpersonal communication and interaction between people. Humans use facial expressions to consciously or subconsciously express their emotional states, such as anger or surprise. As humans, we are able to easily identify changes in facial expressions even in complicated scenarios, but the task of facial expression recognition and analysis is complex and challenging to a computer. The automatic analysis of facial expressions by computers has applications in several scientific subjects such as psychology, neurology, pain assessment, lie detection, intelligent environments, psychiatry, and emotion and paralinguistic communication. We look at methods of facial expression recognition, and in particular, the recognition of Facial Action Coding System’s (FACS) Action Units (AUs). Movements of individual muscles on the face are encoded by FACS from slightly different, instant changes in facial appearance. Contractions of specific facial muscles are related to a set of units called AUs. We make use of Speeded Up Robust Features (SURF) to extract keypoints from the face and use the SURF descriptors to create feature vectors. SURF provides smaller sized feature vectors than other commonly used feature extraction techniques. SURF is comparable to or outperforms other methods with respect to distinctiveness, robustness, and repeatability. It is also much faster than other feature detectors and descriptors. The SURF descriptor is scale and rotation invariant and is unaffected by small viewpoint changes or illumination changes. We use the SURF feature vectors to train a recurrent neural network (RNN) to recognize AUs from the Cohn-Kanade database. An RNN is able to handle temporal data received from image sequences in which an AU or combination of AUs are shown to develop from a neutral face. We are recognizing AUs as they provide a more fine-grained means of measurement that is independent of age, ethnicity, gender and different expression appearance. In addition to recognizing FACS AUs from the Cohn-Kanade database, we use our trained RNNs to recognize the development of pain in human subjects. We make use of the UNBC-McMaster pain database which contains image sequences of people experiencing pain. In some cases, the pain results in their face moving out-of-plane or some degree of in-plane movement. The temporal processing ability of RNNs can assist in classifying AUs where the face is occluded and not facing frontally for some part of the sequence. Results are promising when tested on the Cohn-Kanade database. We see higher overall recognition rates for upper face AUs than lower face AUs. Since keypoints are globally extracted from the face in our system, local feature extraction could provide improved recognition results in future work. We also see satisfactory recognition results when tested on samples with out-of-plane head movement, showing the temporal processing ability of RNNs

    "Gaze-Based Biometrics: some Case Studies"

    Get PDF

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202

    3D Photo Mapper

    Get PDF
    corecore