22,070 research outputs found

    Throughput efficient AODV for improving QoS routing in energy aware mobile adhoc network

    Get PDF
    Mobile Ad hoc Networks (MANETs) is a type of wireless network that is made up of mobile nodes which coordinate themselves without the help of a central coordinator. The network topology changes as nodes are mobile. One of the major challenges of MANET is limited bandwidth which tends to mitigate the Quality of Service (QoS) of the network as users are not satisfied. A variety of routing protocols has been employed aiming at improving the throughput of the network in order to meet user demands. This paper proposes the development of a throughput efficient Ad-hoc On demand Distance Vector (TE-AODV) routing protocol targeted towards improving the QoS of MANET by mitigating network overhead. In this work, all nodes are assumed to be transmitting while calculating their Instant Processing State (IPS) using the concept of knapsack problem. A threshold value for node IPS is set and any node below the set threshold value is not considered during data transmission. An improved Location Aided Routing (iLAR) is used for route search process which helped in reducing network overhead. Results from simulation showed that TE-AODV has improved the throughput of energy aware Ad-hoc On demand Distance Vector (E-AODV) routing protocol. TE-AODV improved the network throughput by 2.9% as a function of simulation time and 3.7% as a function of mobility of node over the E-AODV routing protocol

    Throughput Efficient AODV for Improving QoS Routing in Energy Aware Mobile Adhoc Network

    Get PDF
    Mobile Ad hoc Networks (MANETs) is a type of wireless network that is made up of mobile nodes which coordinate themselves without the help of a central coordinator. The network topology changes as nodes are mobile. One of the major challenges of MANET is limited bandwidth which tends to mitigate the Quality of Service (QoS) of the network as users are not satisfied.  A variety of routing protocols has been employed aiming at improving the throughput of the network in order to meet user demands. This paper proposes the development of a throughput efficient Ad-hoc On demand Distance Vector (TE-AODV) routing protocol targeted towards improving the QoS of MANET by mitigating network overhead. In this work, all nodes are assumed to be transmitting while calculating their Instant Processing State (IPS) using the concept of knapsack problem. A threshold value for node IPS is set and any node below the set threshold value is not considered during data transmission. An improved Location Aided Routing (iLAR) is used for route search process which helped in reducing network overhead. Results from simulation showed that TE-AODV has improved the throughput of energy aware Ad-hoc On demand Distance Vector (E-AODV) routing protocol. TE-AODV improved the network throughput by 2.9% as a function of simulation time and 3.7% as a function of mobility of node over the E-AODV routing protocol

    Proximity aware routing in ad hoc networks

    Get PDF
    Most of the existing routing protocols for ad hoc networks are designed to scale in networks of a few hundred nodes. They rely on state concerning all links of the network or links on the route between a source and a destination. This may result in poor scaling properties in larger mobile networks or when node mobility is high. Using location information to guide the routing process is one of the most often proposed means to achieve scalability in large mobile networks. However, locationbased routing is difficult when there are holes in the network topology. We propose a novel positionbased routing protocol called Proximity Aware Routing for Ad-hoc networks (PARA) to address these issues. PARA selects the next hop of a packet based on 2-hops neighborhood information. We introduce the concept of “proximity discovery”. The knowledge of a node’s 2-hops neighborhood enables the protocol to anticipate concave nodes and helps reduce the risks that the routing protocol will reach a concave node in the network. Our simulation results show that PARA’s performance is better in sparse networks with little congestion. Moreover, PARA significantly outperforms GPSR for delivery ratio, transmission delay and path length. Our results also indicate that PARA delivers more packets than AODV under the same conditions

    Design and analysis of a beacon-less routing protocol for large volume content dissemination in vehicular ad hoc networks

    Get PDF
    Largevolumecontentdisseminationispursuedbythegrowingnumberofhighquality applications for Vehicular Ad hoc NETworks(VANETs), e.g., the live road surveillance service and the video-based overtaking assistant service. For the highly dynamical vehicular network topology, beacon-less routing protocols have been proven to be efficient in achieving a balance between the system performance and the control overhead. However, to the authors’ best knowledge, the routing design for large volume content has not been well considered in the previous work, which will introduce new challenges, e.g., the enhanced connectivity requirement for a radio link. In this paper, a link Lifetime-aware Beacon-less Routing Protocol (LBRP) is designed for large volume content delivery in VANETs. Each vehicle makes the forwarding decision based on the message header information and its current state, including the speed and position information. A semi-Markov process analytical model is proposed to evaluate the expected delay in constructing one routing path for LBRP. Simulations show that the proposed LBRP scheme outperforms the traditional dissemination protocols in providing a low end-to-end delay. The analytical model is shown to exhibit a good match on the delay estimation with Monte Carlo simulations, as well

    A Coalition-Formation Game Model for Energy-Efficient Routing in Mobile Ad-hoc Network

    Get PDF
    One of the most routing problems in Mobile Ad-hoc Network is the node’s selfishness. Nodes are generally selfish and try to maximize their own benefit; hence these nodes refuse to forward packet on behalf of others to preserve their limited energy resources. This selfishness may lead to a low efficiency of routing. Therefore, it is important to study mechanisms which can be used encourage cooperation among nodes, to maintain the network efficiency. In this paper, we propose a cooperative game theoretic model to support more energy-aware and available bandwidth routing in MANET. We introduce a novel framework from coalitional-formation game theory, called hedonic coalition-formation game. We integrate this model to OLSR protocol that is an optimization over the classical link state protocol for the MANETs. Within each coalition, a coalition coordinator acts as a special MPR node to improve the energy efficient and the packet success rate of the transmission. Simulation results show how the proposed algorithm improve the performance in terms of the percentage of selected MPR nodes in the network, the percentage of alive nodes by time, and the Packet Delivery Ratio. Which prove that our proposed model leads, to better results compared to the classical OLSR

    Techniques to enhance the lifetime of mobile ad hoc networks

    Get PDF
    Devices in Mobile Ad Hoc Networks (MANETs) are mostly powered by battery. Since the battery capacity is fixed, some techniques to save energy at the device level or at the protocol stack should be applied to enhance the MANETs lifetime. In this thesis, we have proposed a few energy saving approaches at the network layer, and MAC layer. First, we proposed a routing technique, to which the following metrics are built into: (i) node lifetime, (ii) maximum limit on the number of connections to a destination, and (iii) variable transmission power. In this technique, we consider a new cost metric which takes into account the residual battery power and energy consumption rate in computing the lifetime of a node. To minimize the overutilization of a node, an upper bound is set on the number of connections that can be established to a destination. The proposed technique is compared with AODV [1] and LER [2]. It outperforms AODV and LER in terms of network lifetime. Next, a technique called Location Based Topology Control with Sleep Scheduling (LBTC) is proposed. It uses the feature of both topology control approach in which the transmission power of a node is reduced, and power management approach in which nodes are put to sleep state. In LBTC the transmission power of a node is determined from the neighborhood location information. A node goes to sleep state only when: (i) it has no traffic to participate, and (ii) its absence does not create a local partition. LBTC is compared with LFTC [3] and ANTC [4]. We observed that the network lifetime in LBTC is substantially enhanced. A framework for post-disaster communication using wireless ad hoc networks is proposed. This framework includes: (i) a multi-channel MAC protocol, (ii) a node-disjoint multipath routing, and (iii) a distributed topology aware scheme. Multi-channel MAC protocol minimizes the congestion in the network by transmitting data through multiple channels. Multipath routing overcomes the higher energy depletion rate at nodes associated with shortest path routing. Topology aware scheme minimizes the maximum power used at node level. Above proposals, taken together intend to increase the network throughput, reduce the end-to-end delay, and enhance the network lifetime of an ad hoc network deployed for disaster response

    A Review of the Energy Efficient and Secure Multicast Routing Protocols for Mobile Ad hoc Networks

    Full text link
    This paper presents a thorough survey of recent work addressing energy efficient multicast routing protocols and secure multicast routing protocols in Mobile Ad hoc Networks (MANETs). There are so many issues and solutions which witness the need of energy management and security in ad hoc wireless networks. The objective of a multicast routing protocol for MANETs is to support the propagation of data from a sender to all the receivers of a multicast group while trying to use the available bandwidth efficiently in the presence of frequent topology changes. Multicasting can improve the efficiency of the wireless link when sending multiple copies of messages by exploiting the inherent broadcast property of wireless transmission. Secure multicast routing plays a significant role in MANETs. However, offering energy efficient and secure multicast routing is a difficult and challenging task. In recent years, various multicast routing protocols have been proposed for MANETs. These protocols have distinguishing features and use different mechanismsComment: 15 page
    corecore