54 research outputs found

    Acyclic Subgraphs of Planar Digraphs

    Get PDF
    An acyclic set in a digraph is a set of vertices that induces an acyclic subgraph. In 2011, Harutyunyan conjectured that every planar digraph on nn vertices without directed 2-cycles possesses an acyclic set of size at least 3n/53n/5. We prove this conjecture for digraphs where every directed cycle has length at least 8. More generally, if gg is the length of the shortest directed cycle, we show that there exists an acyclic set of size at least (1βˆ’3/g)n(1 - 3/g)n.Comment: 9 page

    Structural properties of 1-planar graphs and an application to acyclic edge coloring

    Full text link
    A graph is called 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other edge. In this paper, we establish a local property of 1-planar graphs which describes the structure in the neighborhood of small vertices (i.e. vertices of degree no more than seven). Meanwhile, some new classes of light graphs in 1-planar graphs with the bounded degree are found. Therefore, two open problems presented by Fabrici and Madaras [The structure of 1-planar graphs, Discrete Mathematics, 307, (2007), 854-865] are solved. Furthermore, we prove that each 1-planar graph GG with maximum degree Ξ”(G)\Delta(G) is acyclically edge LL-choosable where L=max⁑{2Ξ”(G)βˆ’2,Ξ”(G)+83}L=\max\{2\Delta(G)-2,\Delta(G)+83\}.Comment: Please cite this published article as: X. Zhang, G. Liu, J.-L. Wu. Structural properties of 1-planar graphs and an application to acyclic edge coloring. Scientia Sinica Mathematica, 2010, 40, 1025--103

    Acyclic 4-choosability of planar graphs without 4-cycles

    Get PDF
    summary:A proper vertex coloring of a graph GG is acyclic if there is no bicolored cycle in GG. In other words, each cycle of GG must be colored with at least three colors. Given a list assignment L={L(v) ⁣:v∈V}L=\{L(v)\colon v\in V\}, if there exists an acyclic coloring Ο€\pi of GG such that Ο€(v)∈L(v)\pi (v)\in L(v) for all v∈Vv\in V, then we say that GG is acyclically LL-colorable. If GG is acyclically LL-colorable for any list assignment LL with ∣L(v)∣β‰₯k|L(v)|\ge k for all v∈Vv\in V, then GG is acyclically kk-choosable. In 2006, Montassier, Raspaud and Wang conjectured that every planar graph without 4-cycles is acyclically 4-choosable. However, this has been as yet verified only for some restricted classes of planar graphs. In this paper, we prove that every planar graph with neither 4-cycles nor intersecting ii-cycles for each i∈{3,5}i\in \{3,5\} is acyclically 4-choosable

    Acyclic edge coloring of subcubic graphs

    Get PDF
    AbstractAn acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and it is denoted by aβ€²(G). From a result of Burnstein it follows that all subcubic graphs are acyclically edge colorable using five colors. This result is tight since there are 3-regular graphs which require five colors. In this paper we prove that any non-regular connected graph of maximum degree 3 is acyclically edge colorable using at most four colors. This result is tight since all edge maximal non-regular connected graphs of maximum degree 3 require four colors
    • …
    corecore