6 research outputs found

    On vertex coloring without monochromatic triangles

    Full text link
    We study a certain relaxation of the classic vertex coloring problem, namely, a coloring of vertices of undirected, simple graphs, such that there are no monochromatic triangles. We give the first classification of the problem in terms of classic and parametrized algorithms. Several computational complexity results are also presented, which improve on the previous results found in the literature. We propose the new structural parameter for undirected, simple graphs -- the triangle-free chromatic number χ3\chi_3. We bound χ3\chi_3 by other known structural parameters. We also present two classes of graphs with interesting coloring properties, that play pivotal role in proving useful observation about our problem. We give/ask several conjectures/questions throughout this paper to encourage new research in the area of graph coloring.Comment: Extended abstrac

    Acyclic, Star and Injective Colouring: A Complexity Picture for H-Free Graphs

    Get PDF

    Graph Partitioning With Input Restrictions

    Get PDF
    In this thesis we study the computational complexity of a number of graph partitioning problems under a variety of input restrictions. Predominantly, we research problems related to Colouring in the case where the input is limited to hereditary graph classes, graphs of bounded diameter or some combination of the two. In Chapter 2 we demonstrate the dramatic eect that restricting our input to hereditary graph classes can have on the complexity of a decision problem. To do this, we show extreme jumps in the complexity of three problems related to graph colouring between the class of all graphs and every other hereditary graph class. We then consider the problems Colouring and k-Colouring for Hfree graphs of bounded diameter in Chapter 3. A graph class is said to be H-free for some graph H if it contains no induced subgraph isomorphic to H. Similarly, G is said to be H-free for some set of graphs H, if it does not contain any graph in H as an induced subgraph. Here, the set H consists usually of a single cycle or tree but may also contain a number of cycles, for example we give results for graphs of bounded diameter and girth. Chapter 4 is dedicated to three variants of the Colouring problem, Acyclic Colouring, Star Colouring, and Injective Colouring. We give complete or almost complete dichotomies for each of these decision problems restricted to H-free graphs. In Chapter 5 we study these problems, along with three further variants of 3-Colouring, Independent Odd Cycle Transversal, Independent Feedback Vertex Set and Near-Bipartiteness, for H-free graphs of bounded diameter. Finally, Chapter 6 deals with a dierent variety of problems. We study the problems Disjoint Paths and Disjoint Connected Subgraphs for H-free graphs

    Acyclically 3-colorable planar graphs

    No full text

    Acyclically 3-Colorable Planar Graphs

    No full text
    corecore