7,847 research outputs found

    Markov equivalence of marginalized local independence graphs

    Full text link
    Symmetric independence relations are often studied using graphical representations. Ancestral graphs or acyclic directed mixed graphs with mm-separation provide classes of symmetric graphical independence models that are closed under marginalization. Asymmetric independence relations appear naturally for multivariate stochastic processes, for instance in terms of local independence. However, no class of graphs representing such asymmetric independence relations, which is also closed under marginalization, has been developed. We develop the theory of directed mixed graphs with μ\mu-separation and show that this provides a graphical independence model class which is closed under marginalization and which generalizes previously considered graphical representations of local independence. For statistical applications, it is pivotal to characterize graphs that induce the same independence relations as such a Markov equivalence class of graphs is the object that is ultimately identifiable from observational data. Our main result is that for directed mixed graphs with μ\mu-separation each Markov equivalence class contains a maximal element which can be constructed from the independence relations alone. Moreover, we introduce the directed mixed equivalence graph as the maximal graph with edge markings. This graph encodes all the information about the edges that is identifiable from the independence relations, and furthermore it can be computed efficiently from the maximal graph.Comment: 49 pages (including supplementary material), updated to add examples and fix typo

    Технология бурения бокового ствола S2 скважины №41 Малодушинского месторождения нефти

    Get PDF
    Probabilistic graphical models are currently one of the most commonly used architectures for modelling and reasoning with uncertainty. The most widely used subclass of these models is directed acyclic graphs, also known as Bayesian networks, which are used in a wide range of applications both in research and industry. Directed acyclic graphs do, however, have a major limitation, which is that only asymmetric relationships, namely cause and effect relationships, can be modelled between their variables. A class of probabilistic graphical models that tries to address this shortcoming is chain graphs, which include two types of edges in the models representing both symmetric and asymmetric relationships between the variables. This allows for a wider range of independence models to be modelled and depending on how the second edge is interpreted, we also have different so-called chain graph interpretations. Although chain graphs were first introduced in the late eighties, most research on probabilistic graphical models naturally started in the least complex subclasses, such as directed acyclic graphs and undirected graphs. The field of chain graphs has therefore been relatively dormant. However, due to the maturity of the research field of probabilistic graphical models and the rise of more data-driven approaches to system modelling, chain graphs have recently received renewed interest in research. In this thesis we provide an introduction to chain graphs where we incorporate the progress made in the field. More specifically, we study the three chain graph interpretations that exist in research in terms of their separation criteria, their possible parametrizations and the intuition behind their edges. In addition to this we also compare the expressivity of the interpretations in terms of representable independence models as well as propose new structure learning algorithms to learn chain graph models from data

    Sequences of regressions and their independences

    Full text link
    Ordered sequences of univariate or multivariate regressions provide statistical models for analysing data from randomized, possibly sequential interventions, from cohort or multi-wave panel studies, but also from cross-sectional or retrospective studies. Conditional independences are captured by what we name regression graphs, provided the generated distribution shares some properties with a joint Gaussian distribution. Regression graphs extend purely directed, acyclic graphs by two types of undirected graph, one type for components of joint responses and the other for components of the context vector variable. We review the special features and the history of regression graphs, derive criteria to read all implied independences of a regression graph and prove criteria for Markov equivalence that is to judge whether two different graphs imply the same set of independence statements. Knowledge of Markov equivalence provides alternative interpretations of a given sequence of regressions, is essential for machine learning strategies and permits to use the simple graphical criteria of regression graphs on graphs for which the corresponding criteria are in general more complex. Under the known conditions that a Markov equivalent directed acyclic graph exists for any given regression graph, we give a polynomial time algorithm to find one such graph.Comment: 43 pages with 17 figures The manuscript is to appear as an invited discussion paper in the journal TES

    Standard imsets for undirected and chain graphical models

    Full text link
    We derive standard imsets for undirected graphical models and chain graphical models. Standard imsets for undirected graphical models are described in terms of minimal triangulations for maximal prime subgraphs of the undirected graphs. For describing standard imsets for chain graphical models, we first define a triangulation of a chain graph. We then use the triangulation to generalize our results for the undirected graphs to chain graphs.Comment: Published at http://dx.doi.org/10.3150/14-BEJ611 in the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Concepts and a case study for a flexible class of graphical Markov models

    Full text link
    With graphical Markov models, one can investigate complex dependences, summarize some results of statistical analyses with graphs and use these graphs to understand implications of well-fitting models. The models have a rich history and form an area that has been intensively studied and developed in recent years. We give a brief review of the main concepts and describe in more detail a flexible subclass of models, called traceable regressions. These are sequences of joint response regressions for which regression graphs permit one to trace and thereby understand pathways of dependence. We use these methods to reanalyze and interpret data from a prospective study of child development, now known as the Mannheim Study of Children at Risk. The two related primary features concern cognitive and motor development, at the age of 4.5 and 8 years of a child. Deficits in these features form a sequence of joint responses. Several possible risks are assessed at birth of the child and when the child reached age 3 months and 2 years.Comment: 21 pages, 7 figures, 7 tables; invited, refereed chapter in a boo

    Graphs for margins of Bayesian networks

    Full text link
    Directed acyclic graph (DAG) models, also called Bayesian networks, impose conditional independence constraints on a multivariate probability distribution, and are widely used in probabilistic reasoning, machine learning and causal inference. If latent variables are included in such a model, then the set of possible marginal distributions over the remaining (observed) variables is generally complex, and not represented by any DAG. Larger classes of mixed graphical models, which use multiple edge types, have been introduced to overcome this; however, these classes do not represent all the models which can arise as margins of DAGs. In this paper we show that this is because ordinary mixed graphs are fundamentally insufficiently rich to capture the variety of marginal models. We introduce a new class of hyper-graphs, called mDAGs, and a latent projection operation to obtain an mDAG from the margin of a DAG. We show that each distinct marginal of a DAG model is represented by at least one mDAG, and provide graphical results towards characterizing when two such marginal models are the same. Finally we show that mDAGs correctly capture the marginal structure of causally-interpreted DAGs under interventions on the observed variables

    Reasoning about Independence in Probabilistic Models of Relational Data

    Full text link
    We extend the theory of d-separation to cases in which data instances are not independent and identically distributed. We show that applying the rules of d-separation directly to the structure of probabilistic models of relational data inaccurately infers conditional independence. We introduce relational d-separation, a theory for deriving conditional independence facts from relational models. We provide a new representation, the abstract ground graph, that enables a sound, complete, and computationally efficient method for answering d-separation queries about relational models, and we present empirical results that demonstrate effectiveness.Comment: 61 pages, substantial revisions to formalisms, theory, and related wor
    corecore