1,490 research outputs found

    Progress and summary of reinforcement learning on energy management of MPS-EV

    Full text link
    The high emission and low energy efficiency caused by internal combustion engines (ICE) have become unacceptable under environmental regulations and the energy crisis. As a promising alternative solution, multi-power source electric vehicles (MPS-EVs) introduce different clean energy systems to improve powertrain efficiency. The energy management strategy (EMS) is a critical technology for MPS-EVs to maximize efficiency, fuel economy, and range. Reinforcement learning (RL) has become an effective methodology for the development of EMS. RL has received continuous attention and research, but there is still a lack of systematic analysis of the design elements of RL-based EMS. To this end, this paper presents an in-depth analysis of the current research on RL-based EMS (RL-EMS) and summarizes the design elements of RL-based EMS. This paper first summarizes the previous applications of RL in EMS from five aspects: algorithm, perception scheme, decision scheme, reward function, and innovative training method. The contribution of advanced algorithms to the training effect is shown, the perception and control schemes in the literature are analyzed in detail, different reward function settings are classified, and innovative training methods with their roles are elaborated. Finally, by comparing the development routes of RL and RL-EMS, this paper identifies the gap between advanced RL solutions and existing RL-EMS. Finally, this paper suggests potential development directions for implementing advanced artificial intelligence (AI) solutions in EMS

    Data-Driven Transferred Energy Management Strategy for Hybrid Electric Vehicles via Deep Reinforcement Learning

    Full text link
    Real-time applications of energy management strategies (EMSs) in hybrid electric vehicles (HEVs) are the harshest requirements for researchers and engineers. Inspired by the excellent problem-solving capabilities of deep reinforcement learning (DRL), this paper proposes a real-time EMS via incorporating the DRL method and transfer learning (TL). The related EMSs are derived from and evaluated on the real-world collected driving cycle dataset from Transportation Secure Data Center (TSDC). The concrete DRL algorithm is proximal policy optimization (PPO) belonging to the policy gradient (PG) techniques. For specification, many source driving cycles are utilized for training the parameters of deep network based on PPO. The learned parameters are transformed into the target driving cycles under the TL framework. The EMSs related to the target driving cycles are estimated and compared in different training conditions. Simulation results indicate that the presented transfer DRL-based EMS could effectively reduce time consumption and guarantee control performance.Comment: 25 pages, 12 figure

    Multi-Microgrid Collaborative Optimization Scheduling Using an Improved Multi-Agent Soft Actor-Critic Algorithm

    Full text link
    The implementation of a multi-microgrid (MMG) system with multiple renewable energy sources enables the facilitation of electricity trading. To tackle the energy management problem of a MMG system, which consists of multiple renewable energy microgrids belonging to different operating entities, this paper proposes a MMG collaborative optimization scheduling model based on a multi-agent centralized training distributed execution framework. To enhance the generalization ability of dealing with various uncertainties, we also propose an improved multi-agent soft actor-critic (MASAC) algorithm, which facilitates en-ergy transactions between multi-agents in MMG, and employs automated machine learning (AutoML) to optimize the MASAC hyperparameters to further improve the generalization of deep reinforcement learning (DRL). The test results demonstrate that the proposed method successfully achieves power complementarity between different entities, and reduces the MMG system operating cost. Additionally, the proposal significantly outperforms other state-of-the-art reinforcement learning algorithms with better economy and higher calculation efficiency.Comment: Accepted by Energie

    Deep Learning -Powered Computational Intelligence for Cyber-Attacks Detection and Mitigation in 5G-Enabled Electric Vehicle Charging Station

    Get PDF
    An electric vehicle charging station (EVCS) infrastructure is the backbone of transportation electrification. However, the EVCS has various cyber-attack vulnerabilities in software, hardware, supply chain, and incumbent legacy technologies such as network, communication, and control. Therefore, proactively monitoring, detecting, and defending against these attacks is very important. The state-of-the-art approaches are not agile and intelligent enough to detect, mitigate, and defend against various cyber-physical attacks in the EVCS system. To overcome these limitations, this dissertation primarily designs, develops, implements, and tests the data-driven deep learning-powered computational intelligence to detect and mitigate cyber-physical attacks at the network and physical layers of 5G-enabled EVCS infrastructure. Also, the 5G slicing application to ensure the security and service level agreement (SLA) in the EVCS ecosystem has been studied. Various cyber-attacks such as distributed denial of services (DDoS), False data injection (FDI), advanced persistent threats (APT), and ransomware attacks on the network in a standalone 5G-enabled EVCS environment have been considered. Mathematical models for the mentioned cyber-attacks have been developed. The impact of cyber-attacks on the EVCS operation has been analyzed. Various deep learning-powered intrusion detection systems have been proposed to detect attacks using local electrical and network fingerprints. Furthermore, a novel detection framework has been designed and developed to deal with ransomware threats in high-speed, high-dimensional, multimodal data and assets from eccentric stakeholders of the connected automated vehicle (CAV) ecosystem. To mitigate the adverse effects of cyber-attacks on EVCS controllers, novel data-driven digital clones based on Twin Delayed Deep Deterministic Policy Gradient (TD3) Deep Reinforcement Learning (DRL) has been developed. Also, various Bruteforce, Controller clones-based methods have been devised and tested to aid the defense and mitigation of the impact of the attacks of the EVCS operation. The performance of the proposed mitigation method has been compared with that of a benchmark Deep Deterministic Policy Gradient (DDPG)-based digital clones approach. Simulation results obtained from the Python, Matlab/Simulink, and NetSim software demonstrate that the cyber-attacks are disruptive and detrimental to the operation of EVCS. The proposed detection and mitigation methods are effective and perform better than the conventional and benchmark techniques for the 5G-enabled EVCS

    Reinforcement learning for power scheduling in a grid-tied pv-battery electric vehicles charging station

    Get PDF
    Grid-tied renewable energy sources (RES) based electric vehicle (EV) charging stations are an example of a distributed generator behind the meter system (DGBMS) which characterizes most modern power infrastructure. To perform power scheduling in such a DGBMS, stochastic variables such as load profile of the charging station, output profile of the RES and tariff profile of the utility must be considered at every decision step. The stochasticity in this kind of optimization environment makes power scheduling a challenging task that deserves substantial research attention. This dissertation investigates the application of reinforcement learning (RL) techniques in solving the power scheduling problem in a grid-tied PV-powered EV charging station with the incorporation of a battery energy storage system. RL is a reward-motivated optimization technique that was derived from the way animals learn to optimize their behavior in a new environment. Unlike other optimization methods such as numerical and soft computing techniques, RL does not require an accurate model of the optimization environment in order to arrive at an optimal solution. This study developed and evaluated the feasibility of two RL algorithms, namely, an asynchronous Q-learning algorithm and an advantage actor-critic (A2C) algorithm, in performing power scheduling in the EV charging station under static conditions. To assess the performances of the proposed algorithms, the conventional Q-learning and actor-critic algorithm were implemented to compare their global cost convergence and their learning characteristics. First, the power scheduling problem was expressed as a sequential decision-making process. Then an asynchronous Q-learning algorithm was developed to solve it. Further, an advantage actor-critic (A2C) algorithm was developed and was used to solve the power scheduling problem. The two algorithms were tested using a 24-hour load, generation and utility grid tariff profiles under static optimization conditions. The performance of the asynchronous Q-learning algorithm was compared with that of the conventional Q-learning method in terms of the global cost, stability and scalability. Likewise, the A2C was compared with the conventional actor-critic method in terms of stability, scalability and convergence. Simulation results showed that both the developed algorithms (asynchronous Q-learning algorithm and A2C) converged to lower global costs and displayed more stable learning characteristics than their conventional counterparts. This research established that proper restriction of the action-space of a Q-learning algorithm improves its stability and convergence. It was also observed that such a restriction may come with compromise of computational speed and scalability. Of the four algorithms analyzed, the A2C was found to produce a power schedule with the lowest global cost and the best usage of the battery energy storage system

    220102

    Get PDF
    In wireless powered sensor networks (WPSN), data of ground sensors can be collected or relayed by an unmanned aerial vehicle (UAV) while the battery of the ground sensor can be charged via wireless power transfer. A key challenge of resource allocation in UAV-aided WPSN is to prevent battery drainage and buffer overflow of the ground sensors in the presence of highly dynamic lossy airborne channels which can result in packet reception errors. Moreover, state and action spaces of the resource allocation problem are large, which is hardly explored online. To address the challenges, a new data-driven deep reinforcement learning framework, DDRL-RA, is proposed to train flight resource allocation online so that the data packet loss is minimized. Due to time-varying airborne channels, DDRL-RA firstly leverages long short-term memory (LSTM) with pre-collected offline datasets for channel randomness predictions. Then, Deep Deterministic Policy Gradient (DDPG) is studied to control the flight trajectory of the UAV, and schedule the ground sensor to transmit data and harvest energy. To evaluate the performance of DDRL-RA, a UAV-ground sensor testbed is built, where real-world datasets of channel gains are collected. DDRL-RA is implemented on Tensorflow, and numerical results show that DDRL-RA achieves 19\% lower packet loss than other learning-based frameworks.This work was partially supported by National Funds through FCT/MCTES (Portuguese Foundation for Science and Technology), within the CISTER Research Unit (UIDP/UIDB/04234/2020); also by national funds through the FCT, under CMU Portugal partnership, within project CMU/TIC/0022/2019 (CRUAV). This work was in part supported by the Federal Ministry of Education and Research (BMBF, Germany) as part of the 6G Research and Innovation Cluster 6G-RIC under Grant 16KISK020K.info:eu-repo/semantics/publishedVersio

    Coordinated Optimal Voltage Control in Distribution Networks with Data-Driven Methods

    Get PDF
    Voltage control is facing significant challenges with the increasing integration of photovoltaic (PV) systems and electric vehicles (EVs) in active distribution networks. This is leading to major transformations of control schemes that require more sophisticated coordination between different voltage regulation devices in different timescales. Except for conventional Volt/Var control (VVC) devices such on-load tap change (OLTC) and capacitor banks (CBs), inverter-based PVs are encouraged to participate in voltage regulation considering their flexible reactive power regulation capability. With the vehicle to grid (V2G) technology and inverter-based interface at charging stations, the charging power of an EV can be also controlled to support voltages. These emerging technologies facilitate the development of two-stage coordinated optimal voltage control schemes. However, these new control schemes pursue a fast response speed with local control strategies in shorter snapshots, which fails to track the optimal solutions for the distribution system operation. The voltage control methods mainly aim to mitigate voltage violations and reduce network power loss, but they seldom focus on satisfying the various requirements of PV and EV customers. This may discourage customer-owned resources from participating in ancillary services such as voltage regulation. Moreover, model-based voltage control methods highly rely on the accurate knowledge of power system models and parameters, which is sometimes difficult to obtain in real-life distribution networks. The goal of this thesis is to propose a data-driven two-stage voltage control framework to fill the research gaps mentioned above, showing what frameworks, models and solution methods can be used in the optimal voltage control of modern active distribution systems to tackle the security and economic challenges posed by high integration of PVs and EVs
    • …
    corecore