345 research outputs found

    Estimating flexibility preferences to resolve temporal scheduling conflicts in activity-based modelling

    Get PDF
    This paper presents a novel activity-based demand model that combines an optimisation framework for continuous temporal scheduling decisions (i.e. activity timings and durations) with traditional discrete choice models for non-temporal choice dimensions (i.e. activity participation, number and type of tours, and destinations). The central idea of our approach is that individuals resolve temporal scheduling conflicts that arise from overlapping activities, e.g. needing to work and desiring to shop at the same time, in order to maximise their daily utility. Flexibility parameters capture behavioural preferences that penalise deviations from desired timings. This framework has three advantages over existing activity-based modelling approaches: (i) the time conflicts between different temporal scheduling decisions including the activity sequence are treated jointly; (ii) flexibility parameters follow a utility maximisation approach; and (iii) the framework can be used to estimate and simulate a city-scale case study in reasonable time. We introduce an estimation routine that allows flexibility parameters to be estimated using real-world observations as well as a simulation routine to efficiently resolve temporal conflicts using an optimisation model. The framework is applied to the full-time workers of a synthetic population for the city of Lausanne, Switzerland. We validate the model results against reported schedules. The results demonstrate the capabilities of our approach to reproduce empirical observations in a real-world case study

    Prospects of the Activity-Based Modelling Approach: A Review of Sweden’s Transport Model- SAMPERS

    Get PDF
    The rapid changes in global development scenarios, such as technological advancements, lifestyle decisions and climate change, call for updated transport models to test micro-level policy decisions. This paper explores the advances in activity-based transport modelling in simulating travel demand in urban scenarios, focusing on Sweden’s National Transport model. Sampers is used for impact analysis, investment calculations for traffic simulations, transport policy implementation evaluations, and accessibility and impact analysis of extensive changes in land use and transport systems in cities and regions of Sweden. This research systematically compares individual components, sub-models, and algorithms and discusses integrations with cutting-edge agent-based models. Furthermore, recent research and projects for Sampers are investigated, highlighting its advantages over current models, potential gaps and limitations, and long-term development prospects. The study concludes by cross-referencing Sampers’ global developments and regional needs to assess its long-term development prospects

    Modelling electric vehicles use: a survey on the methods

    No full text
    In the literature electric vehicle use is modelled using of a variety of approaches in power systems, energy and environmental analyses as well as in travel demand analysis. This paper provides a systematic review of these diverse approaches using a twofold classification of electric vehicle use representation, based on the time scale and on substantive differences in the modelling techniques. For time of day analysis of demand we identify activity-based modelling (ABM) as the most attractive because it provides a framework amenable for integrated cross-sector analyses, required for the emerging integration of the transport and electricity network. However, we find that the current examples of implementation of AMB simulation tools for EV-grid interaction analyses have substantial limitations. Amongst the most critical there is the lack of realism how charging behaviour is represented

    The use of the concept of event in enterprise ontologies and requirements engineering literature.

    Get PDF
    The concept of event is used in a lot of meanings. It can be the possible outcome of doing something (probability theory), it can be a business transaction (accounting), or just a plain happening. In software engineering, the concept of event is also used a lot. It is used to accomplish loose coupling between software components or to realise interaction between different services. There is however not a consensus on the meaning of `an event'. In enterprise ontologies, an event is defined as a happening at one point in time, or as an activity which takes time to complete. In requirement engineering, the same different uses can be found, together with an event as a request for something that needs to be done. These differences can also be found in implementation. All these distinct purposes of the word event make it difficult to integrate and use different requirement engineering techniques. Comparison or transformations between models drawn in different grammars is impossible because of the ambiguity of the concept of event. We define three meanings for an event that are used by enterprise ontologies and requirement engineering techniques: an achievement (happening at one point in time), an activity (happening over time) and a request (a demand for something that needs to be done). We also identify a missing link between real economic events, the events defined in the requirements model and the events used in implementation.Requirements modelling; Enterprise ontology; Process modelling; Dynamic; Event;

    The Use of Ontologies in Contextually Aware Environments

    No full text
    In this paper we outline work in progress related to the construction of contextually aware pervasive computing environments, through the use of semantic and knowledge technologies. Key to this activity is modelling both where and what a user is doing at any given time. We present a prototype application to illustrate this work and describe part of its implementation

    Towards a framework for predicting whole life-cycle cost for long-term digital preservation

    Get PDF
    Estimating the costs for the whole lifecycle of long-term digital preservation (LTDP) activities ena-bles decision makers to choose carefully what data to preserve, duration of preservation and type of preservation techniques best applied for their information. To address this need, a framework is de-veloped to generate a cost model that will estimate costs for long-term digital preservation activities using storage in the cloud and taking into consideration the impact of mitigating uncertainties, espe-cially obsolescence issues on future costs. This cost estimating framework is part of the European pro-ject entitled ‘Enabling kNowledge Sustainability Usability and Recovery for Economic value’ which aims to provide a total long-term digital preservation solution for companies and public sector organi-sations interested in keeping their digital information alive for the long-term within the healthcare, fi-nancial and the clinical trials business sectors

    Integrated in- and out-of-home scheduling framework: A utility optimization-based approach

    Get PDF
    Existing activity-based modeling predominantly focus on out-of-home activities in order to understand transport demand. In this research, we extend the state of practice in activity-based modelling by determining both in- and out-of-home activities in a single scheduling framework. This approach has two main benefits: Firstly, it can capture the trade-offs between in-home and out-of-home activities. Secondly, in-home time-use patterns can be used to model high resolution energy demand. Our work builds on an existing optimisation framework, which treats individuals as maximising their total utility from completed activities and incorporates multiple scheduling decisions simultaneously. The approach is tested on a set of detailed daily schedules extracted from the the 2016-2020 UK Time Use Survey data. The results show that the model is able to generate peoples’ daily activity schedules based on their individual preferences and constraints
    • 

    corecore