90,654 research outputs found

    Context for Ubiquitous Data Management

    Get PDF
    In response to the advance of ubiquitous computing technologies, we believe that for computer systems to be ubiquitous, they must be context-aware. In this paper, we address the impact of context-awareness on ubiquitous data management. To do this, we overview different characteristics of context in order to develop a clear understanding of context, as well as its implications and requirements for context-aware data management. References to recent research activities and applicable techniques are also provided

    The Context of Cloud Computing/Services Adoption in Business: A Systematic Review with Activity Theory perspective

    Get PDF
    Cloud computing has been established as a prominent research topic with the rise of a ubiquitous provision of computing resources over the last decade. According to literature review, previous studies are found focusing on the technical issue mostly; however, accompanying with the cloud service developing progress, there are a wide range of applications for adopting cloud computing/services and without an overall comprehension. This study aims to proposed a conceptual framework to systematically explore the activities and elements related to cloud computing/services adoption in business. The research framework is found useful for understanding the context of cloud computing and services and the preliminary findings are helpful to further explore the related activities and relationships behind on cloud computing/services adoption in business

    Context, intelligence and interactions for personalized systems

    Get PDF
    This special issue on Context, Intelligence and Interactions for Personalized Systems provides a snapshot of the latest research activities, results, and technologies and application developments focusing on the smart personalised systems in Ambient Intelligence and Humanized Computing. It is intended for researchers and practitioners from artificial intelligence (AI) with expertise in formal modeling, representation and inference on situations, activities and goals; researchers from ubiquitous computing and embedded systems with expertise in context-aware computing; and application developers or users with expertise and experience in user requirements, system implementation and evaluation. The special issue also serves to motivate application scenarios from various domains including smart homes and cities, localisation tracking, image analysis and environmental monitoring. For solution developers and providers of specific application domains, this special issue will provide an opportunity to convey needs and requirements, as well as obtain first-hand information on the latest technologies, prototypes, and application exemplars

    Promoting STEM via UMI: an Ecological Framing of CoPs in Networking and Networked Robotics

    Get PDF
    Ubiquitous Computing, Mobile Computing and Internet of Things (UMI) technologies, are widely diffused in the everyday life. In addition to their primary usage (e.g., supporting the implementation of the future 5G network),these technologies can be used in the context of Science Education.According to this perspective, the innovative psycho-pedagogical approach here presented has been ad-hoc developed for the Horizon 2020 Project “Exploiting Ubiquitous Computing, Mobile Computing and the Internet of Things to promote Science Education” (Umi-Sci-Ed). The aim of the project is to enhance knowledge and skills of Science, Technology, Engineering and Mathematics (STEM) and to promote positive attitudes towards these disciplines. In order to reach this goal, the UMI technologies, framed in the Community of Practices (CoPs) paradigm, will be introduced in the learning process of secondary schools’ students (i.e., 9thand 10thgrade). Specifically, the students will attend to innovative learning activities, such as hands-on activities, concerning with Networking and networked Robotics. In the present contribution, the theoretical framework that constitutes the rationale for the Umi-Sci-Ed projectwill be described. In particular, the “bottom-up” socio-constructionist perspective will be presented, aswell as the main technological tools (e.g., UDOO) that would be used to implement an integrated STEM learning environment. The expected results of the project will be discussed

    Pervasive Personal Information Spaces

    Get PDF
    Each user’s electronic information-interaction uniquely matches their information behaviour, activities and work context. In the ubiquitous computing environment, this information-interaction and the underlying personal information is distributed across multiple personal devices. This thesis investigates the idea of Pervasive Personal Information Spaces for improving ubiquitous personal information-interaction. Pervasive Personal Information Spaces integrate information distributed across multiple personal devices to support anytime-anywhere access to an individual’s information. This information is then visualised through context-based, flexible views that are personalised through user activities, diverse annotations and spontaneous information associations. The Spaces model embodies the characteristics of Pervasive Personal Information Spaces, which emphasise integration of the user’s information space, automation and communication, and flexible views. The model forms the basis for InfoMesh, an example implementation developed for desktops, laptops and PDAs. The design of the system was supported by a tool developed during the research called activity snaps that captures realistic user activity information for aiding the design and evaluation of interactive systems. User evaluation of InfoMesh elicited a positive response from participants for the ideas underlying Pervasive Personal Information Spaces, especially for carrying out work naturally and visualising, interpreting and retrieving information according to personalised contexts, associations and annotations. The user studies supported the research hypothesis, revealing that context-based flexible views may indeed provide better contextual, ubiquitous access and visualisation of information than current-day systems

    Medical data processing and analysis for remote health and activities monitoring

    Get PDF
    Recent developments in sensor technology, wearable computing, Internet of Things (IoT), and wireless communication have given rise to research in ubiquitous healthcare and remote monitoring of human\u2019s health and activities. Health monitoring systems involve processing and analysis of data retrieved from smartphones, smart watches, smart bracelets, as well as various sensors and wearable devices. Such systems enable continuous monitoring of patients psychological and health conditions by sensing and transmitting measurements such as heart rate, electrocardiogram, body temperature, respiratory rate, chest sounds, or blood pressure. Pervasive healthcare, as a relevant application domain in this context, aims at revolutionizing the delivery of medical services through a medical assistive environment and facilitates the independent living of patients. In this chapter, we discuss (1) data collection, fusion, ownership and privacy issues; (2) models, technologies and solutions for medical data processing and analysis; (3) big medical data analytics for remote health monitoring; (4) research challenges and opportunities in medical data analytics; (5) examples of case studies and practical solutions

    Ubiquitous Computing and Ambient Intelligence—UCAmI

    Get PDF
    The Ubiquitous Computing (UC) idea envisioned by Weiser in 1991 [1] has recently evolved to a more general paradigm known as Ambient Intelligence (AmI) that represents a new generation of user-centred computing environments and systems. These solutions aim to find new ways to better integrate information technology into everyday life devices and activities. AmI environments are integrated by several autonomous computational devices of modern life ranging from consumer electronics to mobile phones. Ideally, people in an AmI environment will not notice these devices, but will benefit from the services these solutions provide them. Such devices are aware of the people present in those environments by reacting to their gestures, actions, and context [2]. Recently the interest in AmI environments has grown considerably due to new challenges posed by society’s demand for highly innovative services, such as smart environments, Ambient Assisted Living (AAL), e-Health, Internet of Things, and intelligent systems, among others.The Ubiquitous Computing (UC) idea envisioned by Weiser in 1991 [1] has recently evolved to a more general paradigm known as Ambient Intelligence (AmI) that represents a new generation of user-centred computing environments and systems. These solutions aim to find new ways to better integrate information technology into everyday life devices and activities. AmI environments are integrated by several autonomous computational devices of modern life ranging from consumer electronics to mobile phones. Ideally, people in an AmI environment will not notice these devices, but will benefit from the services these solutions provide them. Such devices are aware of the people present in those environments by reacting to their gestures, actions, and context [2]. Recently the interest in AmI environments has grown considerably due to new challenges posed by society’s demand for highly innovative services, such as smart environments, Ambient Assisted Living (AAL), e-Health, Internet of Things, and intelligent systems, among others
    corecore