7 research outputs found

    Regular hedge model checking

    Get PDF
    We extend the regular model checking framework so that it can handle systems with arbitrary width tree-like structures. Con gurations of a system are represented by trees of arbitrary arities, sets of con gurations are represented by regular hedge automata, and the dynamics of a system is modeled by a regular hedge transducer. We consider the problem of computing the transitive closure T + of a regular hedge transducer T. This construction is not possible in general. Therefore, we present a general acceleration technique for computing T+. Our method consists of enhancing the termination of the iterative computation of the different compositions Ti by merging the states of the hedge transducers according to an appropriate equivalence relation that preserves the traces of the transducers. We provide a methodology for effectively deriving equivalence relations that are appropriate. We have successfully applied our technique to compute transitive closures for some mutual exclusion protocols de ned on arbitrary width tree topologies, as well as for an XML application.4th IFIP International Conference on Theoretical Computer ScienceRed de Universidades con Carreras en Informática (RedUNCI

    Abstract Learning Frameworks for Synthesis

    Full text link
    We develop abstract learning frameworks (ALFs) for synthesis that embody the principles of CEGIS (counter-example based inductive synthesis) strategies that have become widely applicable in recent years. Our framework defines a general abstract framework of iterative learning, based on a hypothesis space that captures the synthesized objects, a sample space that forms the space on which induction is performed, and a concept space that abstractly defines the semantics of the learning process. We show that a variety of synthesis algorithms in current literature can be embedded in this general framework. While studying these embeddings, we also generalize some of the synthesis problems these instances are of, resulting in new ways of looking at synthesis problems using learning. We also investigate convergence issues for the general framework, and exhibit three recipes for convergence in finite time. The first two recipes generalize current techniques for convergence used by existing synthesis engines. The third technique is a more involved technique of which we know of no existing instantiation, and we instantiate it to concrete synthesis problems

    Regular hedge model checking

    Get PDF
    We extend the regular model checking framework so that it can handle systems with arbitrary width tree-like structures. Con gurations of a system are represented by trees of arbitrary arities, sets of con gurations are represented by regular hedge automata, and the dynamics of a system is modeled by a regular hedge transducer. We consider the problem of computing the transitive closure T + of a regular hedge transducer T. This construction is not possible in general. Therefore, we present a general acceleration technique for computing T+. Our method consists of enhancing the termination of the iterative computation of the different compositions Ti by merging the states of the hedge transducers according to an appropriate equivalence relation that preserves the traces of the transducers. We provide a methodology for effectively deriving equivalence relations that are appropriate. We have successfully applied our technique to compute transitive closures for some mutual exclusion protocols de ned on arbitrary width tree topologies, as well as for an XML application.4th IFIP International Conference on Theoretical Computer ScienceRed de Universidades con Carreras en Informática (RedUNCI

    Abstract Learning Frameworks for Synthesis

    Get PDF
    Abstract We develop abstract learning frameworks (ALFs) for synthesis that embody the principles of CEGIS (counter-example based inductive synthesis) strategies that have become widely applicable in recent years. Our framework defines a general abstract framework of iterative learning, based on a hypothesis space that captures the synthesized objects, a sample space that forms the space on which induction is performed, and a concept space that abstractly defines the semantics of the learning process. We show that a variety of synthesis algorithms in current literature can be embedded in this general framework. While studying these embeddings, we also generalize some of the synthesis problems these instances are of, resulting in new ways of looking at synthesis problems using learning. We also investigate convergence issues for the general framework, and exhibit three recipes for convergence in finite time. The first two recipes generalize current techniques for convergence used by existing synthesis engines. The third technique is a more involved technique of which we know of no existing instantiation, and we instantiate it to concrete synthesis problems

    Actively learning to verify safety for fifo automata

    No full text
    Abstract. We apply machine learning techniques to verify safety properties of finite state machines which communicate over unbounded FIFO channels. Instead of attempting to iteratively compute the reachable states, we use Angluin’s L* algorithm to learn these states. The learnt set of reachable states is then used either to prove that the system is safe, or to produce a valid execution of the system that leads to an unsafe state (i.e. to produce a counterexample). Specifically, we assume that we are given a model of the system and we provide a novel procedure which answers both membership and equivalence queries for a representation of the reachable states. We define a new encoding scheme for representing reachable states and their witness execution; this enables the learning algorithm to analyze a larger class of FIFO systems automatically than a naive encoding would allow. We show the upper bounds on the running time and space for our method. We have implemented our approach in Java, and demonstrate its application to a few case studies.

    Komponentenbasierte Softwareentwicklung für datenflußorientierte eingebettete Systeme

    Get PDF
    Diese Dissertation beschäftigt sich mit den Problemen bei der Entwicklung von effizienter und zuverlässiger Software für eingebettete Systeme. Eingebettete Systeme sind inhärent nebenläufig, was mit einen Grund für ihre hohe Entwurfskomplexität darstellt. Aus dieser Nebenläufigkeit resultiert ein hoher Grad an Kommunikation zwischen den einzelnen Komponenten. Eine wichtige Forderung zur Vereinfachung des Entwurfsprozesses besteht in der getrennten Modellierung von Kommunikationsprotokollen und eigentlichen Verarbeitungsalgorithmen. Daraus resultiert eine höhere Wiederverwendbarkeit bei sich ändernden Kommunikationsstrukturen. Die Grundlage für die sogenannten Datenflußsprachen bildet eine einfache von Gilles Kahn konzipierte Sprache für Parallelverarbeitung. In dieser Sprache besteht ein System aus einer Menge sequentieller Prozesse (Komponenten), die über Fifokanäle miteinander kommunizieren. Ein Prozess ist rechenbereit, wenn seine Eingangsfifos mit entsprechenden Daten gefüllt sind. Übertragen werden physikalische Signale, die als Ströme bezeichnet werden. Ströme sind Folgen von Werten ohne explizite Zeitangaben. Das Einsatzgebiet von Datenflußsprachen liegt in der Entwicklung von Programmen zur Bild- und Signalverarbeitung, typischen Aufgaben in eingebetteten Systemen. Die Programmierung erfolgt visuell, wobei man Icons als Repräsentanten parametrisierbarer Komponenten aus einer Bibliothek auswählt und mittels Kanten (Fifos) verbindet. Ein im allgemeinen dynamischer Scheduler überwacht die Ausführung des fertiggestellten Anwendungsprogramms. Diese Arbeit schlägt ein universelleres Modell physikalischer Signale vor. Dabei werden zwei Ziele verfolgt: 1. Effiziente Kommunikation zwischen den Komponenten 2. Entwurfsbegleitende Überprüfung von Programmeigenschaften unter Verwendung komplexerer Komponentenmodelle Zur Effizienzsteigerung werden nur relevante Werte innerhalb von Strömen übertragen. Dies erhöht zwar den Mehraufwand zur Kennzeichnung des Aufbaus eines Teilstroms, in praktischen Anwendungen ist die hier vorgestellte Methode jedoch effizienter. Die Einführung neuer Signalmerkmale erlaubt unterschiedlichste Überprüfungen der Einhaltung von Typregeln durch die Eingangs- und Ausgangsströme einer Komponente. Anstelle einfacher Schaltregeln werden aufwendigere Kommunikationsprotokolle für die verschiedenen Arten von Komponenten eingeführt. Fifomaten (Fifo-Automaten) dienen als formale Grundlage. Mittels eines dezidierten Model-Checking-Verfahrens wird das Zusammenspiel der Fifomaten daraufhin untersucht, ob ein zyklischer Schedule existiert. Die Existenz eines solchen zyklischen Schedules schließt Speicherüberlauf und Deadlocks aus und garantiert darüber hinaus, daß das Programm nach endlicher Zeit wieder in die Ausgangssituation zurückfindet. Da im allgemeinen die Datenflußprogramme turingäquivalent sind, kann es allerdings zyklische Schedules geben, die das Verfahren nicht entdeckt. Mit der hier vorgestellten und implementierten Methode wird die Entwicklungszeit korrekter Datenflußprogramme deutlich reduziert. Das neue Modell physikalischer Signale macht zudem die Ausführung effizienter
    corecore