1,634 research outputs found

    A Meta-Learning Approach to One-Step Active Learning

    Full text link
    We consider the problem of learning when obtaining the training labels is costly, which is usually tackled in the literature using active-learning techniques. These approaches provide strategies to choose the examples to label before or during training. These strategies are usually based on heuristics or even theoretical measures, but are not learned as they are directly used during training. We design a model which aims at \textit{learning active-learning strategies} using a meta-learning setting. More specifically, we consider a pool-based setting, where the system observes all the examples of the dataset of a problem and has to choose the subset of examples to label in a single shot. Experiments show encouraging results

    Stable Feature Selection for Biomarker Discovery

    Full text link
    Feature selection techniques have been used as the workhorse in biomarker discovery applications for a long time. Surprisingly, the stability of feature selection with respect to sampling variations has long been under-considered. It is only until recently that this issue has received more and more attention. In this article, we review existing stable feature selection methods for biomarker discovery using a generic hierarchal framework. We have two objectives: (1) providing an overview on this new yet fast growing topic for a convenient reference; (2) categorizing existing methods under an expandable framework for future research and development

    Bag-Level Aggregation for Multiple Instance Active Learning in Instance Classification Problems

    Full text link
    A growing number of applications, e.g. video surveillance and medical image analysis, require training recognition systems from large amounts of weakly annotated data while some targeted interactions with a domain expert are allowed to improve the training process. In such cases, active learning (AL) can reduce labeling costs for training a classifier by querying the expert to provide the labels of most informative instances. This paper focuses on AL methods for instance classification problems in multiple instance learning (MIL), where data is arranged into sets, called bags, that are weakly labeled. Most AL methods focus on single instance learning problems. These methods are not suitable for MIL problems because they cannot account for the bag structure of data. In this paper, new methods for bag-level aggregation of instance informativeness are proposed for multiple instance active learning (MIAL). The \textit{aggregated informativeness} method identifies the most informative instances based on classifier uncertainty, and queries bags incorporating the most information. The other proposed method, called \textit{cluster-based aggregative sampling}, clusters data hierarchically in the instance space. The informativeness of instances is assessed by considering bag labels, inferred instance labels, and the proportion of labels that remain to be discovered in clusters. Both proposed methods significantly outperform reference methods in extensive experiments using benchmark data from several application domains. Results indicate that using an appropriate strategy to address MIAL problems yields a significant reduction in the number of queries needed to achieve the same level of performance as single instance AL methods

    How Many Pairwise Preferences Do We Need to Rank A Graph Consistently?

    Full text link
    We consider the problem of optimal recovery of true ranking of nn items from a randomly chosen subset of their pairwise preferences. It is well known that without any further assumption, one requires a sample size of Ω(n2)\Omega(n^2) for the purpose. We analyze the problem with an additional structure of relational graph G([n],E)G([n],E) over the nn items added with an assumption of \emph{locality}: Neighboring items are similar in their rankings. Noting the preferential nature of the data, we choose to embed not the graph, but, its \emph{strong product} to capture the pairwise node relationships. Furthermore, unlike existing literature that uses Laplacian embedding for graph based learning problems, we use a richer class of graph embeddings---\emph{orthonormal representations}---that includes (normalized) Laplacian as its special case. Our proposed algorithm, {\it Pref-Rank}, predicts the underlying ranking using an SVM based approach over the chosen embedding of the product graph, and is the first to provide \emph{statistical consistency} on two ranking losses: \emph{Kendall's tau} and \emph{Spearman's footrule}, with a required sample complexity of O(n2χ(Gˉ))23O(n^2 \chi(\bar{G}))^{\frac{2}{3}} pairs, χ(Gˉ)\chi(\bar{G}) being the \emph{chromatic number} of the complement graph Gˉ\bar{G}. Clearly, our sample complexity is smaller for dense graphs, with χ(Gˉ)\chi(\bar G) characterizing the degree of node connectivity, which is also intuitive due to the locality assumption e.g. O(n43)O(n^\frac{4}{3}) for union of kk-cliques, or O(n53)O(n^\frac{5}{3}) for random and power law graphs etc.---a quantity much smaller than the fundamental limit of Ω(n2)\Omega(n^2) for large nn. This, for the first time, relates ranking complexity to structural properties of the graph. We also report experimental evaluations on different synthetic and real datasets, where our algorithm is shown to outperform the state-of-the-art methods.Comment: In Thirty-Third AAAI Conference on Artificial Intelligence, 201
    corecore