1,251 research outputs found

    European White Book on Real-Time Power Hardware in the Loop Testing : DERlab Report No. R- 005.0

    Get PDF
    The European White Book on Real-Time-Powerhardware-in-the-Loop testing is intended to serve as a reference document on the future of testing of electrical power equipment, with speciïŹ c focus on the emerging hardware-in-the-loop activities and application thereof within testing facilities and procedures. It will provide an outlook of how this powerful tool can be utilised to support the development, testing and validation of speciïŹ cally DER equipment. It aims to report on international experience gained thus far and provides case studies on developments and speciïŹ c technical issues, such as the hardware/software interface. This white book compliments the already existing series of DERlab European white books, covering topics such as grid-inverters and grid-connected storag

    Improved grid interaction of photovoltaics using smart micro-inverters

    Get PDF

    Improved grid interaction of photovoltaics using smart micro-inverters

    Get PDF

    Wide-Scale Adoption of Photovoltaic Energy:Grid Code Modifications Are Explored in the Distribution Grid

    Get PDF

    Technology roadmap: solar photovoltaic energy - 2014 edition

    Get PDF
    Solar power enhances energy diversity and hedges against price volatility of fossil fuels, thus stabilising costs of electricity generation in the long term, argues this report. Overview Solar energy is widely available throughout the world and can contribute to reduced dependence on energy imports. As it entails no fuel price risk or constraints, it also improves security of supply. Solar power enhances energy diversity and hedges against price volatility of fossil fuels, thus stabilising costs of electricity generation in the long term. Solar PV entails no greenhouse gas (GHG) emissions during operation and does not emit other pollutants (such as oxides of sulphur and nitrogen); additionally, it consumes no or little water. As local air pollution and extensive use of fresh water for cooling of thermal power plants are becoming serious concerns in hot or dry regions, these benefits of solar PV become increasingly important. Key findings: Since 2010, the world has added more solar photovoltaic (PV) capacity than in the previous four decades. Total global capacity overtook 150 gigawatts (GW) in early 2014 The geographical pattern of deployment is rapidly changing. While a few European countries, led by Germany and Italy, initiated large-scale PV development, since 2013, the People’s Republic of China has led the global PV market, followed by Japan and the United States PV system prices have been divided by three in six years in most markets, while module prices have been divided by five This roadmap envisions PV’s share of global electricity reaching 16% by 2050, a significant increase from the 11% goal in the 2010 roadmap Achieving this roadmap’s vision of 4 600 GW of installed PV capacity by 2050 would avoid the emission of up to 4 gigatonnes (Gt) of carbon dioxide (CO2) annually This roadmap assumes that the costs of electricity from PV in different parts of the world will converge as markets develop, with an average cost reduction of 25% by 2020, 45% by 2030, and 65% by 2050, leading to a range of USD 40 to 160/MWh, assuming a cost of capital of 8% To achieve the vision in this roadmap, the total PV capacity installed each year needs to rise from 36 GW in 2013 to 124 GW per year on average, with a peak of 200 GW per year between 2025 and 2040 The variability of the solar resource is a challenge. All flexibility options – including interconnections, demand-side response, flexible generation, and storage –need to be developed to meet this challenge Appropriate regulatory frameworks – and well-designed electricity markets, in particular – will be critical to achieve the vision in this roadmap Levelised cost of electricity from new-built PV systems and generation by sector

    Small-Scale Smart Grid Construction and Analysis

    Get PDF
    The smart grid (SG) is a commonly used catch-phrase in the energy industry yet there is no universally accepted definition. The objectives and most useful concepts have been investigated extensively in economic, environmental and engineering research by applying statistical knowledge and established theories to develop simulations without constructing physical models. In this study, a small-scale version (SSSG) is constructed to physically represent these ideas so they can be evaluated. Results of construction show data acquisition three times more expensive than the grid itself although mainly due to the incapability to downsize 70% of data acquisition costs to small-scale. Experimentation on the fully assembled grid exposes the limitations of low cost modified sine wave power, significant enough to recommend pure sine wave investment in future SSSG iterations. Findings can be projected to full-size SG at a ratio of 1:10, based on the appliance representing average US household peak daily load. However this exposes disproportionalities in the SSSG compared with previous SG investigations and recommended changes for future iterations are established to remedy this issue. Also discussed are other ideas investigated in the literature and their suitability for SSSG incorporation. It is highly recommended to develop a user-friendly bidirectional charger to more accurately represent vehicle-to-grid (V2G) infrastructure. Smart homes, BEV swap stations and pumped hydroelectric storage can also be researched on future iterations of the SSSG
    • 

    corecore