50,571 research outputs found

    CleanML: A Study for Evaluating the Impact of Data Cleaning on ML Classification Tasks

    Full text link
    Data quality affects machine learning (ML) model performances, and data scientists spend considerable amount of time on data cleaning before model training. However, to date, there does not exist a rigorous study on how exactly cleaning affects ML -- ML community usually focuses on developing ML algorithms that are robust to some particular noise types of certain distributions, while database (DB) community has been mostly studying the problem of data cleaning alone without considering how data is consumed by downstream ML analytics. We propose a CleanML study that systematically investigates the impact of data cleaning on ML classification tasks. The open-source and extensible CleanML study currently includes 14 real-world datasets with real errors, five common error types, seven different ML models, and multiple cleaning algorithms for each error type (including both commonly used algorithms in practice as well as state-of-the-art solutions in academic literature). We control the randomness in ML experiments using statistical hypothesis testing, and we also control false discovery rate in our experiments using the Benjamini-Yekutieli (BY) procedure. We analyze the results in a systematic way to derive many interesting and nontrivial observations. We also put forward multiple research directions for researchers.Comment: published in ICDE 202

    Standardization of electroencephalography for multi-site, multi-platform and multi-investigator studies: Insights from the canadian biomarker integration network in depression

    Get PDF
    Subsequent to global initiatives in mapping the human brain and investigations of neurobiological markers for brain disorders, the number of multi-site studies involving the collection and sharing of large volumes of brain data, including electroencephalography (EEG), has been increasing. Among the complexities of conducting multi-site studies and increasing the shelf life of biological data beyond the original study are timely standardization and documentation of relevant study parameters. We presentthe insights gained and guidelines established within the EEG working group of the Canadian Biomarker Integration Network in Depression (CAN-BIND). CAN-BIND is a multi-site, multi-investigator, and multiproject network supported by the Ontario Brain Institute with access to Brain-CODE, an informatics platform that hosts a multitude of biological data across a growing list of brain pathologies. We describe our approaches and insights on documenting and standardizing parameters across the study design, data collection, monitoring, analysis, integration, knowledge-translation, and data archiving phases of CAN-BIND projects. We introduce a custom-built EEG toolbox to track data preprocessing with open-access for the scientific community. We also evaluate the impact of variation in equipment setup on the accuracy of acquired data. Collectively, this work is intended to inspire establishing comprehensive and standardized guidelines for multi-site studies
    • …
    corecore