Data quality affects machine learning (ML) model performances, and data
scientists spend considerable amount of time on data cleaning before model
training. However, to date, there does not exist a rigorous study on how
exactly cleaning affects ML -- ML community usually focuses on developing ML
algorithms that are robust to some particular noise types of certain
distributions, while database (DB) community has been mostly studying the
problem of data cleaning alone without considering how data is consumed by
downstream ML analytics. We propose a CleanML study that systematically
investigates the impact of data cleaning on ML classification tasks. The
open-source and extensible CleanML study currently includes 14 real-world
datasets with real errors, five common error types, seven different ML models,
and multiple cleaning algorithms for each error type (including both commonly
used algorithms in practice as well as state-of-the-art solutions in academic
literature). We control the randomness in ML experiments using statistical
hypothesis testing, and we also control false discovery rate in our experiments
using the Benjamini-Yekutieli (BY) procedure. We analyze the results in a
systematic way to derive many interesting and nontrivial observations. We also
put forward multiple research directions for researchers.Comment: published in ICDE 202