3 research outputs found

    Improving the Performance of SQL Join Operation in the Distributed Enterprise Information System by Caching

    Get PDF
    The enterprise information system (EIS) contains databases and other data sources in multiple data centers. Users query the EIS via clients. The client has a working space in the cloud. Caching data in client space will reduce the total execution time of the query. However, the client space has limited resources to store data. There are two options for caching data at the client space: caching the final results of query operations, or caching the source data tables. The problem is that some query operations such as “joining multiple big tables” will simply produce a result too big to store in cache in some cases. By contrast, caching source data tables may be a better choice in those situations. This paper presents an algorithm that combines active caching and passive caching to improve the cache hit, thus improving performance of the SQL join query in the cloud computing environment

    Cache-based query processing for search engines

    Get PDF
    Cataloged from PDF version of article.In practice, a search engine may fail to serve a query due to various reasons such as hardware/network failures, excessive query load, lack of matching documents, or service contract limitations (e.g., the query rate limits for third-party users of a search service). In this kind of scenarios, where the backend search system is unable to generate answers to queries, approximate answers can be generated by exploiting the previously computed query results available in the result cache of the search engine.In this work, we propose two alternative strategies to implement this cache-based query processing idea. The first strategy aggregates the results of similar queries that are previously cached in order to create synthetic results for new queries. The second strategy forms an inverted index over the textual information (i.e., query terms and result snippets) present in the result cache and uses this index to answer new queries. Both approaches achieve reasonable result qualities compared to processing queries with an inverted index built on the collection. © 2012 ACM

    Active caching for recommender systems

    Get PDF
    Web users are often overwhelmed by the amount of information available while carrying out browsing and searching tasks. Recommender systems substantially reduce the information overload by suggesting a list of similar documents that users might find interesting. However, generating these ranked lists requires an enormous amount of resources that often results in access latency. Caching frequently accessed data has been a useful technique for reducing stress on limited resources and improving response time. Traditional passive caching techniques, where the focus is on answering queries based on temporal locality or popularity, achieve a very limited performance gain. In this dissertation, we are proposing an ‘active caching’ technique for recommender systems as an extension of the caching model. In this approach estimation is used to generate an answer for queries whose results are not explicitly cached, where the estimation makes use of the partial order lists cached for related queries. By answering non-cached queries along with cached queries, the active caching system acts as a form of query processor and offers substantial improvement over traditional caching methodologies. Test results for several data sets and recommendation techniques show substantial improvement in the cache hit rate, byte hit rate and CPU costs, while achieving reasonable recall rates. To ameliorate the performance of proposed active caching solution, a shared neighbor similarity measure is introduced which improves the recall rates by eliminating the dependence on monotinicity in the partial order lists. Finally, a greedy balancing cache selection policy is also proposed to select most appropriate data objects for the cache that help to improve the cache hit rate and recall further
    corecore