10 research outputs found

    Predictive tracking control of network-based agents with communication delays

    Get PDF

    Adaptive Control of the Chaotic System via Singular System Approach

    Get PDF
    This paper deals with the control problem of the chaotic system subject to disturbance. The sliding mode surface is designed by singular system approach, and sufficient condition for convergence is given. Then, the adaptive sliding mode controller is designed to make the state arrive at the sliding mode surface in finite time. Finally, Lorenz system is considered as an example to show the effectiveness of the proposed method

    Adaptive Robust Actuator Fault Accommodation for a Class of Uncertain Nonlinear Systems with Unknown Control Gains

    Get PDF
    An adaptive robust fault tolerant control approach is proposed for a class of uncertain nonlinear systems with unknown signs of high-frequency gain and unmeasured states. In the recursive design, neural networks are employed to approximate the unknown nonlinear functions, K-filters are designed to estimate the unmeasured states, and a dynamical signal and Nussbaum gain functions are introduced to handle the unknown sign of the virtual control direction. By incorporating the switching function σ algorithm, the adaptive backstepping scheme developed in this paper does not require the real value of the actuator failure. It is mathematically proved that the proposed adaptive robust fault tolerant control approach can guarantee that all the signals of the closed-loop system are bounded, and the output converges to a small neighborhood of the origin. The effectiveness of the proposed approach is illustrated by the simulation examples

    Optimal Vibration Control for Tracked Vehicle Suspension Systems

    Get PDF
    Technique of optimal vibration control with exponential decay rate and simulation for vehicle active suspension systems is developed. Mechanical model and dynamic system for a class of tracked vehicle suspension vibration control is established and the corresponding system of state space form is described. In order to prolong the working life of suspension system and improve ride comfort, based on the active suspension vibration control devices and using optimal control approach, an optimal vibration controller with exponential decay rate is designed. Numerical simulations are carried out, and the control effects of the ordinary optimal controller and the proposed controller are compared. Numerical simulation results illustrate the effectiveness of the proposed technique

    Rail Vehicle Vibrations Control Using Parameters Adaptive PID Controller

    Get PDF
    In this study, vertical rail vehicle vibrations are controlled by the use of conventional PID and parameters which are adaptive to PID controllers. A parameters adaptive PID controller is designed to improve the passenger comfort by intuitional usage of this method that renews the parameters online and sensitively under variable track inputs. Sinusoidal vertical rail misalignment and measured real rail irregularity are considered as two different disruptive effects of the system. Active vibration control is applied to the system through the secondary suspension. The active suspension application of rail vehicle is examined by using 5-DOF quarter-rail vehicle model by using Manchester benchmark dynamic parameters. The new parameters of adaptive controller are optimized by means of genetic algorithm toolbox of MATLAB. Simulations are performed at maximum urban transportation speed (90 km/h) of the rail vehicle with ±5% load changes of rail vehicle body to test the robustness of controllers. As a result, superior performance of parameters of adaptive controller is determined in time and frequency domain

    Robust and Multi-Objective Model Predictive Control Design for Nonlinear Systems

    Get PDF
    The multi-objective trade-off paradigm has become a very valuable design tool in engineering problems that have conflicting objectives. Recently, many control designers have worked on the design methods which satisfy multiple design specifications called multi-objective control design. However,the main challenge posed for the MPC design lies in the high computation load preventing its application to the fast dynamic system control in real-time. To meet this challenge, this thesis has proposed several methods covering nonlinear system modeling, on-line MPC design and multi-objective optimization. First, the thesis has proposed a robust MPC to control the shimmy vibration of the landing gear with probabilistic uncertainty. Then, an on-line MPC method has been proposed for image-based visual servoing control of a 6 DOF Denso robot. Finally, a multi-objective MPC has been introduced to allow the designers consider multiple objectives in MPC design. In this thesis, Tensor Product (TP) model transformation as a powerful tool in the modeling of the complex nonlinear systems is used to find the linear parameter-varying (LPV) models of the nonlinear systems. Higher-order singular value decomposition (HOSVD) technique is used to obtain a minimal order of the model tensor. Furthermore, to design a robust MPC for nonlinear systems in the presence of uncertainties which degrades the system performance and can lead to instability, we consider the parameters of the nonlinear systems with probabilistic uncertainties in the modeling using TP transformation. In this thesis, a computationally efficient methods for MPC design of image-based visual servoing, i.e. a fast dynamic system has been proposed. The controller is designed considering the robotic visual servoing system's input and output constraints, such as robot physical limitations and visibility constraints. The main contributions of this thesis are: (i) design MPC for nonlinear systems with probabilistic uncertainties that guarantees robust stability and performance of the systems; (ii) develop a real-time MPC method for a fast dynamical system; (iii) to propose a new multi-objective MPC for nonlinear systems using game theory. A diverse range of systems with nonlinearities and uncertainties including landing gear system, 6 DOF Denso robot are studied in this thesis. The simulation and real-time experimental results are presented and discussed in this thesis to verify the effectiveness of the proposed methods

    DISCRETE-TIME ADAPTIVE CONTROL ALGORITHMS FOR REJECTION OF SINUSOIDAL DISTURBANCES

    Get PDF
    We present new adaptive control algorithms that address the problem of rejecting sinusoids with known frequencies that act on an unknown asymptotically stable linear time-invariant system. To achieve asymptotic disturbance rejection, adaptive control algorithms of this dissertation rely on limited or no system model information. These algorithms are developed in discrete time, meaning that the control computations use sampled-data measurements. We demonstrate the effectiveness of algorithms via analysis, numerical simulations, and experimental testings. We also present extensions to these algorithms that address systems with decentralized control architecture and systems subject to disturbances with unknown frequencies
    corecore