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Montréal, Québec, Canada

February 2016

c© Amir Hajiloo, 2016



Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Mr. Amir Hajiloo

Entitled: Robust and Multi-Objective Model Predictive Control

Design for Nonlinear Systems

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Mechanical Engineering)

complies with the regulations of this University and meets the accepted standards with re-

spect to originality and quality.

Signed by the final examining commitee:

Dr. Wei-Ping Zhu, Chair

Dr. Zheng Hong Zhu, External Examiner

Dr. Shahin Hashtrudi Zad, Examiner

Dr. Chun-Yi Su, Examiner

Dr. Javad Dargahi, Examiner

Dr. Wen-Fang Xie, Supervisor

Approved
Chair of Department or Graduate Program Director

2016

Amir Asif, Ph.D., Interim Dean

Faculty of Engineering and Computer Science



Abstract

Robust and Multi-Objective Model Predictive Control Design for Nonlinear
Systems

Amir Hajiloo, Ph.D.

Concordia University, 2016

The multi-objective trade-off paradigm has become a very valuable design tool in engineering

problems that have conflicting objectives. Recently, many control designers have worked on

the design methods which satisfy multiple design specifications called multi-objective control

design. However,the main challenge posed for the MPC design lies in the high computation

load preventing its application to the fast dynamic system control in real-time. To meet this

challenge, this thesis has proposed several methods covering nonlinear system modeling, on-

line MPC design and multi-objective optimization. First, the thesis has proposed a robust

MPC to control the shimmy vibration of the landing gear with probabilistic uncertainty.

Then, an on-line MPC method has been proposed for image-based visual servoing control

of a 6 DOF Denso robot. Finally, a multi-objective MPC has been introduced to allow the

designers consider multiple objectives in MPC design.

In this thesis, Tensor Product (TP) model transformation as a powerful tool in the mod-

eling of the complex nonlinear systems is used to find the linear parameter-varying (LPV)

models of the nonlinear systems. Higher-order singular value decomposition (HOSVD) tech-

nique is used to obtain a minimal order of the model tensor. Furthermore, to design a robust

MPC for nonlinear systems in the presence of uncertainties which degrades the system per-

formance and can lead to instability, we consider the parameters of the nonlinear systems

with probabilistic uncertainties in the modeling using TP transformation. In this thesis,

a computationally efficient methods for MPC design of image-based visual servoing, i.e. a

fast dynamic system has been proposed. The controller is designed considering the robotic

visual servoing system’s input and output constraints, such as robot physical limitations and

visibility constraints.

The main contributions of this thesis are: (i) design MPC for nonlinear systems with

probabilistic uncertainties that guarantees robust stability and performance of the systems;
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(ii) develop a real-time MPC method for a fast dynamical system; (iii) to propose a new

multi-objective MPC for nonlinear systems using game theory. A diverse range of systems

with nonlinearities and uncertainties including landing gear system, 6 DOF Denso robot are

studied in this thesis. The simulation and real-time experimental results are presented and

discussed in this thesis to verify the effectiveness of the proposed methods.
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Chapter 1

Introduction

Model Predictive Control (MPC) or Receding Horizon Control (RHC) has been recently at-

tracting more attention than ever, because of the fact that the MPC can take the constraints

on inputs, outputs, and state variables directly into account through an optimization prob-

lem. During the last decades, much effort has been paid on enhancing the optimization

procedure in order to obtain a fast and robust MPC scheme which can be applied on-line

and handle uncertainties.

The underlying goal of this thesis is to incorporate uncertainty model and multi-objective

trade-off paradigm, which is a very valuable design tool in engineering problems, in the MPC

for the complex nonlinear systems. This thesis focuses on linearization techniques, which

can reduce the nonlinear system complexity and can model the time-varying and parametric

uncertainties. Thus it leads to solve non-convex and intractable nonlinear optimization

problems as the linear convex optimization problems.

1.1 Overview

The development of high-performance controllers, which provide acceptable stability, robust-

ness, and optimal behavior of nonlinear systems, has been a major research activity among

the control engineering practitioners in recent years. Although, the classical control strate-

gies such as Proportional-Integral-Derivatives (PID) controllers have been adopted in many

industrial processes, the highly nonlinear behavior of many dynamical and industrial systems

rises the need for more precise controllers [1]. Model predictive control (MPC) or receding

horizon control (RHC) is an advanced control strategy which is developed from last three
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decades and its applications have been increased in a wide variety range of control engineer-

ing [2–4]. The main application of the MPC was in the industrial process [5] and its practical

application is very successful [6]; however, nowadays due to the development of multi-core

computers, it can be used for controlling the dynamical systems with fast responses such as

robotics and aerospace industries [7–10].

Model predictive control is used for both linear and nonlinear systems. The controller

design is based on the optimization technique in which the current control action is obtained

by minimizing a cost function of the constrained finite-horizon control on-line [8, 11]. MPC is

an optimal open-loop control strategy; therefore, according to Rawlings [10]: “The difficulty

that MPC introduces into the robustness question is the open-loop nature of the optimal

control problem and the implicit feedback produced by the receding horizon implementa-

tion.” In order to handle this issue, the considered objective function should be minimized

for finite horizons, that is, the measurement and optimization procedures are accomplished

from the current time to some future time instant.

The cost function includes the current measurement and the prediction of the future

states, also the current and future control signals based on a discrete-time model of the system

[3]. The purpose of considering the finite-horizon objective function and measuring the states

at each time step is to compensate for unmeasured disturbances and model uncertainties [12].

The unique characteristic of the MPC is that it can take the constraints on inputs, outputs,

and state variables directly into account. Therefore, it has become a popular control method

both in theory and practice [3].

The major drawback of MPC is large computational time required to solve the opti-

mization problem which often exceeds sampling interval in real time situation [13]. This

computational time, in general, depends on the time that an internal model, called pre-

dictor, takes to calculate future response of a system in the optimization procedure [14].

The predictor can be linear or nonlinear model. The advantage of using linear model in

MPC is that the related optimization problems are convex and efficiently solvable, even the

problem has the large number of design variables [5]. On the contrary, using the nonlinear

models results in non-convex optimization problems which cannot be solved in real-time

[15]. Recently, much attention has been paid on the nonlinear system modelling using a set

of linear models. This method relies on the embedding of a nonlinear system into a poly-

topic Linear Paramete-Varying (LPV) uncertain system associated with time-varying and

state-dependent weighting functions (also called scheduling parameter) [16]. Therefore, the
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nonlinear system is approximated by a model which consists of a number of linear models

assigned to the trajectories of the original plant [17]. During the last decade, many research

activities have been carried out on the control method development for LPV systems [18].

One of the methods in approximating a complex nonlinear system is the well-known

Takagi-Sugeno (T-S) fuzzy modelling [19]. By using T-S fuzzy modelling method, the non-

linear system can be modelled with N linear models at each time step, and the system

behavior is approximated as a Convex Combination of the N linear systems [17]. In fact,

such model contains a polytope described by N linear models (vertices) or superposition of

linear time-invariant (LTI) models. However, one drawback remains; i.e. N vertices, mem-

bership functions and fuzzy rule bases need to be decided for constructing the T-S fuzzy

model. They can be regarded as the subjective design parameters, which are inherently

difficult to design.

Another method based on Higher Order Singular Value Decomposition (HOSVD) is called

the Tensor Product (TP) model transformation. This model can extract the fully orthonor-

mal and singular value ordered structure of the given function [20]. Compared with T-S

fuzzy model, TP model has the universal approximation property [21], that is, vast range of

dynamical system can be modeled with TP model transformation. Therefore, we are able

to use numerical techniques, such as Linear Matrix Inequality (LMI) approach to design the

controllers providing the stability and minimizing some design specifications.

The vast ranges of the control problems can be formulated as convex optimization prob-

lems with LMIs [16], and also there are powerful numerical methods to solve LMI problems

[22]. Also, the robust optimization technique presented in the modelling YALMIP [23, 24]

toolbox can be used to solve the optimization problem as on-line. In this thesis, the primary

objective is to provide an efficient method for controlling the complex nonlinear system using

TP model and LMI techniques.

In practical control problem, the designers should consider several design specifications

which are normally in conflict with each other. Therefore, the optimal control design prob-

lems can be formulated as a multi-objective optimization problem, which can be solved by

LMI formulation efficiently [25]. The only problem of this approach is that in MPC design

at each sampling interval only one optimal solution is needed. However, in multi-objective

optimization, a set of non-dominated solutions, called Pareto Frontier, are obtained. In this

thesis, to cope with this drawback of multi-objective optimization, Nash Bargaining Solution
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will be used to obtain a trade-off point among Pareto solutions [26]. Therefore, the combi-

nation of LMI, robust convex programming, and Nash solution provides an efficient on-line

method to solve multi-objective convex optimization problem presented in this thesis.

1.2 Research Objectives and Scopes

The specific objectives and scopes of this thesis can be summarized as follows

1. To propose a computationally efficient robust MPC approach for linear parameter-

varying system whose parameters have probabilistic uncertainties. Although there are

many different MPC approaches which can handle uncertainties, there is scant MPC

method for the systems with probabilistic uncertainties. In this thesis, a robust MPC

scheme is proposed to control a system with probabilistic uncertainty.

2. To design a real-time MPC for fast dynamic systems, which is usually considered as

one of the challenging control problems among control engineers. In this thesis, based

on the TP model transformation and reduced LMI conditions, a real-time MPC scheme

is proposed to handle the parametric uncertainties.

3. To consider multi-objective design criteria in MPC design for nonlinear systems, a new

MPC scheme using with multi-objective optimization technique is proposed to take

into account different objective functions in designing procedure.

1.3 Contributions

The main contributions of the thesis are listed as follows

1. A sufficient stability criteria for exponential stability of MPC has been proposed for

uncertain nonlinear systems. The Polytopic LPV models are used to address the

stability analysis for a class of nonlinear systems.

2. A robust MPC has been designed to handle the probabilistic uncertainty. Considering

probabilistic uncertainty for the uncertain parameters of the system decreases the

conservativeness of the conventional robust control methods which are based on the

worst-case scenario.
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3. A computationally efficient and fast MPC scheme has been developed for fast dynamic

systems. The Image Based Visual Servoing (IBVS) system is chosen to assessment the

proposed method. To the best of the authors knowledge, this is the first time that

MPC method has been successfully applied to IBVS system on-line. All the reported

MPC methods applied on the IBVS systems are confined the simulation results. In this

thesis, the developed MPC scheme is executed on the real-time experimental set-up

consisting of a 6 DOF Denso robot and eye-in-hand camera.

4. A novel MPC scheme has been proposed based on the multi-objective optimization

techniques. The multi-objective optimization discovers a set of non-dominated points

in the design variables space. To find a single control signal at each sampling time,

Nash bargaining solution has been used to select the trade-off point.

1.4 Publications

The presented research work is documented in a number of journals and conference proceed-

ings. The following is the list of author’s publications.
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1. A. Hajiloo, M. Keshmiri, W.F. Xie, T.T. Wang,“Robust On-Line Model Predictive

Control for a Constrained Image Based Visual Servoing,” IEEE Transactions on In-

dustrial Electronics, In Press, 2016.

2. A. Hajiloo, W.F. Xie, “The Stochastic Robust Model Predictive Control of Shimmy
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476-485, March 2015,
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1.5 Outline

The thesis starts with an introductory chapter on TP model transformation in Chapter 2.

This chapter presents the methods to deal with nonlinear systems including parameters with

probabilistic uncertainties. Also, the preliminary notions of MPC are given in Chapter 2.

The robust MPC for an LPV system with probabilistic uncertainty is presented in Chapter

3. Chapter 4 is devoted to the design and application of a real-time MPC on an experimental

system. As a further designed MPC, a multi-objective MPC scheme is proposed in Chapter

5. Finally, concluding remarks and future work are presented in Chapter 6.
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Chapter 2

Literature Review

The main objective of this chapter is to present a literature review on LPV models and MPC

design. The major ideas and the methodology that will be used throughout this thesis are

addressed here. To this end, the LPV systems modeling, stability analysis and controller

synthesis of LPV systems using LMIs techniques will be addressed in this chapter.

2.1 Introduction

With the advent of very powerful algorithms for convex optimization, many convex opti-

mization problems including linear matrix inequalities (LMIs) can be solved very rapidly

and efficiently, even for those that have no analytical solutions. As a result, a large number

of control engineering problems, which cannot be solved using Lyapunov function, Riccati

equations, or other classical techniques, can be reformulated in terms of LMIs so that a

handful of standard convex and quasi-convex optimization techniques can be used to solve

them[22].

The main idea of the LMI method is to formulate a given problem as an optimization

problem with convex objective functions and LMI constraints [16, 22]. A variety of design

specification and constraints from control theory such as Lyapunov and Riccati inequalities

can be expressed as LMIs [16]. For example, Lyapunov–based stability analysis and the

design of the linear systems can be considered as the quadratic matrix inequality.

Some of the problems addressed by LMI techniques includes the following

1. Robust stability of the uncertain systems [16, 21, 22],
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2. Multi-objective state feedback controller design [22, 25],

3. Optimal Linear Quadratic Gaussian control [16],

4. Stability analysis of Takagi–Sugeno (T–S) fuzzy system [27, 28].

The use of polytopic model in control system design results in solving the design pro-

cedure as convex optimization which involves LMIs [21]. Therefore, a lot of attention has

been recently paid to the nonlinear system modelling using a set of linear plants, which

allows the control engineers to use LMI methods to design the controllers for intricate non-

linear systems. This method relies on the embedding of a nonlinear system into a polytopic

Linear Parameter-Varying (LPV) uncertain system associated with time–varying and state–

dependent weighting functions (also called scheduling parameter) [16]. Hence, the nonlinear

system can be modeled with N linear models, and the system behavior is approximated as a

Convex Combination of the N linear systems [29]. In fact, such model can be described as a

polytope described by N linear models (vertices). In the following sections, some preliminary

definitions about LPV models and LMI techniques are presented. Also, the basic concept

and notations of model predictive control will be presented in this chapter.

2.2 Robust Nonlinear System Modeling

In real control engineering problems, there exist a variety of uncertainty sources which should

be considered through modeling and control system design. Normally, two types of un-

certainty, namely, structured and unstructured uncertainties are used in uncertain system

classification. Those uncertainties include plant parameter variations due to environmental

condition, incomplete knowledge of the parameters, and unmodelled high frequency dynam-

ics.

Consider the following nonlinear system representation as

ẋ(t) = f(x(t),q) + g(x(t),q)u(t), (2.1a)

y(t) = h(x(t),q), (2.1b)

where, f(.), g(.) and h(.) are nonlinear functions, x = [x1, x2, ..., xn]T ∈ Rn is the state

vector of the system, u ∈ Rm is the input, and y ∈ Rp is the output of the system. Also,
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Figure 2.1: Norm-bounded uncertainty vs. Probabilistic uncertainty.

q is the vector of probabilistic uncertain parameters with known probability distribution

function (PDF).

One of the conventional methods which can be used for modeling the system with para-

metric uncertainties is norm-bounded perturbation, and control system design for this type

of systems are based on the worst case scenario. In this method, the most possible pessimistic

value of the performance for the set of uncertain models is considered. Consequently, the

performance of the robust controllers designed based on such norm-bounded model un-

certainties is deteriorated for the most likely models of the uncertain systems which may

probabilistically happen in the reality [30]. Therefore, in order to reduce the conservatism

or accounting more for the most likely plants with respect to uncertainties, in this thesis,

the probabilistic uncertainties are propagated through the system model parameters. Figure

2.1 illustrates the difference between norm-bounded and probabilistic uncertainties. It can

be seen that for probabilistic uncertainty the likelihood of parameter values is considered,

while for norm-bounded uncertainties, the likelihood of each value is the same.

There are different methods for modeling the system uncertainties [16]. In this thesis, the

polytopic model is used for modeling the system uncertainties. To find the polytope model

of the nonlinear systems (2.1) with parametric uncertainties, the first step is describing them
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as a family of linear time-varying system. Every trajectory of the system (2.1) satisfies [16]

ẋ(t) = A(p(t),q)x(t) +B(p(t),q)u(t) (2.2a)

y(t) = C(p(t),q)x(t) +D(p(t),q)u(t), (2.2b)

where the nonlinear system matrix is

S(p(t),q) =

(
A(p(t),q) B(p(t),q)

C(p(t),q) D(p(t),q)

)
∈ R(n+p)×(n+m) (2.3)

and p(t) ∈ Ω is the vector of time-varying parameters. It may include some elements of x(t)

or u(t). The set Ω is a closed hypercube which describes the time-varying and parametric

uncertainties in this system.

In general, the system presented in (2.2) belongs to the polytopic LPVs. In polytopic

models, system matrix, S varies within a fixed polytope of matrices, that is, Ω is described

by a list of its vertices as

Ω =

{(
A1 B1

C1 D1

)
, ...,

(
AL BL

CL DL

)}
. (2.4)

In other words, one has

S :=

{
L∑
i=1

wiSi; wi ≥ 0,
L∑
i=1

wi = 1

}
, (2.5)

where, wi, i = 1, . . . , L are weighting functions, also, are the functions of uncertain variables,

which imply that the system in (2.5) belongs to convex hull. In other words, any admissible

system matrix S can be written as an unknown convex combination of L vertices Si, i =

1, ..., L, given by

Si =

(
Ai Bi

Ci Di

)
, (2.6)

where Ai, Bi, Ci, and Di, i = 1, ..., L, are constant matrices with appropriate dimensions,

which construct ith linear time-invariant (LTI) system [16, 20].

In (2.3), q is the vector of probabilistic uncertain parameters whose elements are time-

independent and have constant values. However, the exact values are unknown. It should
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be noted that this kind of uncertainty satisfies the convex condition in (2.5). Suppose q is a

random variable with predefined probability function, Pr, which satisfies Pr(q) ≥ 0 for all

q ∈ C and
∫
C

Pr(q)qdq = 1, then C ⊆ Rn is convex [31].

It should be noted that the dimension of Ω depends on the elements of the uncertain

vector (for the sake of notational simplicity, hence, p is used for both uncertainties related

to states and parameters).

The system given in (2.2) can now be written as(
ẋ

y

)
=

L∑
i=1

wi(p)Si

(
x

y

)
. (2.7)

In order to have an accurate model, the number of LTI models, Si, should be large. It

means in pursuit of a good approximation, one has to face high computational cost. In order

to lighten the mentioned contradictory features, Baranyi [21] presented a way in which tensor

product (TP) model transformation based on the higher-order singular value decomposition

(HOSVD) is used to model an uncertain system with minimal number of vertices. After

using this method, the LMI-tools can be used to solve the control design problem.

2.3 Tensor Product Model Transformation

During the last decade, the models representation and identification has changed signifi-

cantly. The TP model transformation is a recently proposed numerical method to transform

LPV models into the parameter varying convex combination of the finite number of LTI

components [21]. The main advantage of the TP model transformation is that the LMI

based control design techniques can be applied on polytopic TP models.

The following briefly introduces the basic operators of tensor algebra and the main con-

cept of HOSVD.

2.3.1 Definitions and Properties of Tensor Algebra

In literatures, tensor algebra is considered as a follow-up technique on linear algebra, that is,

it is a generalization of classical linear algebra. In other words, tensors are the universalities

of vectors and matrices [32]. For example, scalars are the tensors of the order 0, vectors are

the tensors of the order 1, and matrices are the tensors of the order 2. It is obvious that the
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tensors of the order greater than 2 not only is it hard to visualize but also it is difficult to

formulate them. The following definitions are adopted from [33] to present the tensors

Definition 2.3.1 (n–mode matrix of tensor A)
Assume an N th-order tensor A ∈ RI1×I2×···×IN , then the n-mode matrix of tensor A, which

is denoted by A(n) ∈ RIn×(In+1In+2...IN I1I2...In−1) contains the element ai1,i2,...,iN where the row

number in and column number r equal

(in+1 − 1)In+2In+3 . . . INI1I2 . . . IN−1 + (in+2 − 1)In+3In+4 . . . INI1I2 . . . In−1 + . . .

+(iN − 1)I1I2 . . . In−1 + (i1 − 1)I2I3 . . . In−1 + (i2 − 1)I3I4 . . . In−1 + · · ·+ In−1.
(2.8)

This method is called ordering, and the purpose of that is to present a higher-order tensor

as a matrix. Then, the singular value decomposition can be applied on the tensors. Figure

2.2 illustrates a third-order tensor A and different n-mode matrices A(n), n = 1, 2, 3. It can

be seen that A(1) is the I1 × I2I3 matrix, also, A(2) and A(3) are the I2 × I3I1 and I3 × I1I2

matrices, respectively.

In order to apply HOSVD technique on higher-order tensors, the following definitions

regarding the tensors are needed.

Definition 2.3.2 (Scalar product)
Consider two tensors A, B ∈ RI1×I2×···×IN , the scalar product of them is defined as

〈A,B〉 =
∑
i1

∑
i2

· · ·
∑
iN

bi1i2...iNai1i2...iN . (2.9)

Using the notations given in [33], the matrix product can be presented as H = U.G.VT

in which G ∈ RI1×I2 , U ∈ RJ1×I2 , V ∈ RJ2×I2 , and H ∈ RJ1×J2 by virtue of the ×n symbol

as H = G×1 U×2 V. This expression means that G is being multiplied along its rows (the

first dimension) by U, and along its columns (the second dimension) by V.

Definition 2.3.3 (n-mode product of a tensor by a matrix)
The n-mode product of a tensor A ∈ RI1×I2×···×IN by a matrix U ∈ RJn×In is an (I1 × I2 ×
· · · × In−1 × Jn × In+1 × · · · × IN) tensor whose elements are given by [33]

(A×n U)i1i2...in−1jnin+1...iN =
∑
in

ai1i2...in−1jnin+1...iNujnin . (2.10)

The multiple n-mode product of a tensor, such as A×1 U1 ×2 U2 ×3 · · · ×N UN can be

written as A
N
⊗
n=1

Un.
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Figure 2.2: Formation of 3-mode matrices of a 3rd-order tensor A.
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2.3.2 Higher Order Singular Value Decomposition

A I1 × I2 matrix A can be factored as

A = USVT , (2.11)

where U is a I1 × I2 orthogonal matrix, V is a I2 × I2 orthogonal matrix, and S is a I1 × I2

pseudodiagonal matrix with the following nonzero singular values

σ1 ≥ σ2 ≥ · · · ≥ σr > 0, (2.12)

where r = min(I1, I2), that is, the number of nonzero singular values equal the rank of matrix

A. Using Definition 2.3.1, (2.11) can be rewritten as follows

A = S×1U×2V. (2.13)

Now, consider a (I1 × I2 × · · · × IN) tensor A. It can be written as the following form

[33]

A = S ×1 U1 ×2 U2 × 3 · · · ×N UN = S
N
⊗
n=1

Un, (2.14)

where Un = (un1 un2 . . .u
n
In

), n = 1 . . . N is a unitary (In × In) matrix. Here, uni is an ith-

mode singular vector, and σni are n-mode singular value of A which can be ordered for all

possible n as follows

σ
(n)
1 ≥ σ

(n)
2 ≥ · · · ≥ σ

(n)
In

> 0. (2.15)

This method is called Higher Order Singular Value Decomposition (HOSVD). Any high

order tensor can be approximated using HOSVD method. The minimal or compact form of

HOSVD is defined as follows [33]

Definition 2.3.4 (Compact HOSVD)

By applying SVD on each n-mode matrix of A, n = 1, . . . , N , and discarding zero singular

values and the related singular vectors, the compact form of HOSVD is obtained as

A = D
N
⊗
n=1

Un, (2.16)

where Un ∈ RIn×Rn and A ∈ RR1×···×RN with Rn ≤ In.
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In many applications, especially in real-time control system design, one should make a

trade-off between complexity and accuracy. In order to reduce the system complexity, some

nonzero singular values, also, the zero ones can be discarded [18, 21]. This method is called

reduced higher order SVD, which is defined as follows

Definition 2.3.5 (Reduced HOSVD)

Discarding the nonzero singular values,σ
(n)
R′n+1, σ

(n)
R′n+2, . . . , σ

(n)
Rn

, and the corresponding sin-

gular vectors, a reduced tensor will be obtained as

Â = D
N
⊗
n=1

Un, (2.17)

where Un ∈ RIn×R′n and A ∈ RR′1×···×R′N with R′n < Rn. The difference between the exact

tensor, A, and the reduced one, Â, can be approximated as follows [18]

ε = ‖A − Â‖2 =

R1∑
i1=R′1+1

(σ
(1)
i1

)2 +

R2∑
i2=R′2+1

(σ
(2)
i2

)2 + · · ·+
Rn∑

in=R′n+1

(σ
(n)
in

)2. (2.18)

In the following section, a brief introduction to linear matrix inequalities is given.

2.4 Linear Matrix Inequalities

Linear Matrix Inequalities (LMIs) are a useful tool for solving a wide variety of optimization

and control problems [16]. The major advantage of LMI techniques in control problems is to

reduce the original problem to a convex optimization problem. According to Boyd et al. [16]:

“The LMIs that arise in system and control theory can be formulated as convex optimization

problems that are amenable to computer solution.”Therefore, the most significant advantage

of which is that many control problems involving LMIs can be solved for which there is no

analytical solutions [34].

2.4.1 LMI Definition

An LMI has the form [16]

F (x) = F0 +
m∑
i=1

xiFi � 0, (2.19)
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where, x ∈ Rm is called decision variables, and Fi ∈ Rn×n, i = 0, . . . , m, are real fixed

symmetric matrices. The inequality symbol in (2.19) means that F (x) is positive definite

matrix, that is, uTF (x)u > 0 for all nonzero u ∈ Rn. Linear inequalities such as those in

(2.26), convex quadratic inequalities, matrix norm inequalities, and various constraints from

control theory such as Lyapunov and Riccati inequalities can all be presented as LMIs [34].

Also, nonrestrict LMIs are represented in the form F (x) � 0.

The LMIs in (2.19) is a convex constraint on x. It means that the set {x|F (x) � 0} is

convex. It can be readily shown that this set is convex. F (x) is a affine function, i.e., F (x)

is a linear function which satisfies the following condition

F (θx1 + (1− θ)x2) = θF (x1) + (1− θ)F (x2), θ ∈ (0, 1),

i.e., the LMI (2.19) forms a convex constraint on x.

The multiple LMIs F1(x) � 0, . . . , Fp(x) � 0 can be expressed as a single LMI in the

following form

F (x) =


F1(x) 0 · · · 0

0 F2(x) · · · 0
...

. . . . . .
...

0 · · · 0 Fp(x)

 . (2.20)

Also, a class of convex nonlinear inequality constraints can be converted to an LMI using

Schur complement lemma. The convex nonlinear inequalities are in the following form

R(x) � 0, Q(x)− S(x)R(x)−1S(x)T � 0, (2.21)

where Q(x) = Q(x)T , R(x) = R(x)T , and S(x) are affine functions of x. It can be converted

into the equivalent LMI as (
Q(x) S(x)

S(x)T R(x)

)
� 0. (2.22)

2.4.2 LMI Applications

As mentioned, many optimization and control problems can be written in terms of a set of

LMIs. Normally, LMI problems are divided into two major classes, feasibility and optimiza-

tion.
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The LMI feasibility test leads to finding xfeas such that F (xfeas) � 0. Such as Lyapunov

stability test in which a matrix P satisfying the LMI should be found

P � 0, ATP + PA ≺ 0, (2.23)

where A ∈ Rn×n is given and P = P T is the variable (in many control problems the variables

are matrices).

In the case of optimization problem with an LMI constraint, the goal is to find xopt which

optimize a cost function J which satisfies F (xopt) � 0.

2.4.3 Solving LMI Problems

One of the useful methods in solving the convex optimization problem that include inequality

constraints is interior-point method [34]. This method has been developed during the last

years and became of true interest in th context of LMI problems [16, 21, 22]. In this method,

the constraints are used to define a barrier function which is similar to the penalty function in

some way [31]. This method allows the constrained optimization problem to be changed into

an unconstrained optimization problem which can be solved using Newton’s method [34]. In

this thesis, the interior-point method is used to solve the optimization problem. Software

for solving convex optimization using interior-point methods can be found in commercial

software such as MATLAB.

2.5 Model Predictive Control

The mid-seventies to mid-eighties is considered as true birth of MPC. Originally, the MPC

strategy developed and became popular in the power plants and petroleum refiners industries,

and now it can be found in a vast variety of industrial applications including food processing,

chemicals, automotive, and aerospace [5, 35]. The MPC is a control paradigm with a great

amount of variants. The variation is mainly based on an explicit process model using to

predict the future response of a system, so-called model predictor. Without going into details,

the finite impulse response (FIS) model-based MPC and step response model-based MPC

are the first algorithms of MPC. Dynamic Matrix Control (DMC), Generalized Predictive

Control (GPC) are the latter algorithms. Despite the vast number of algorithms, they all

share the same structural features, i.e. based on the optimization of the future system
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Figure 2.3: Model Predictive Control strategy (Adopted from [14]).

behavior a sequence of future control variables are obtained. The first part of the obtained

optimal sequence is then applied to the system, and the entire procedure is repeated after a

short time interval [5].

Fig. 2.3 illustrates the principle of the MPC. It can be seen that the optimization is done

based on the measurement at time instant k. The optimization procedure leads to obtaining

control input vector over Control Horizon, Tu = [k, k + 1, ..., k + Nu]. The model predictor

predicts the behavior of the system over an interval which is called Prediction Horizon,

Tp = [k, k+ 1, ..., k+Np]. In MPC, Np is usually equal or greater than Nu [2, 12, 36, 37]. It

should be noted that uk+i|k = uk+Nu−1|k for i ≥ Nu [37].

In both tracking and regulating control design, the control signal is calculated as the

system output is kept as close as possible to the desired trajectory or reference value [2].

As mentioned before, the first control signal is used to control the process and at the next

sampling time the optimization is repeated. It should be noted that at the sampling time

k + 1, the current control signal uk+1|k+1 will be different to the uk+1|k [2].

2.6 System Representation

In this thesis, a discrete time state-space model is considered. A linear discrete-time system

used throughout the thesis can be written as follows

xk+1 = Axk +Buk, (2.24a)
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yk = Cxk, (2.24b)

where, x ∈ Rn is the state vector of the system, u ∈ Rp is the input, and y ∈ Rm is the

output of the system. Also, in MPC, the state and control signal must satisfy the following

constraints at each sample time k

xk ∈ X, (2.25a)

uk ∈ U, (2.25b)

where, X ⊆ Rn is a convex and closed set, and U ⊆ Rm is considered as a convex and

compact set which contains the equilibrium point (origin) in their interior [5]. As they are

convex set, they can be, also, described by linear inequalities

Exx ≤ Fx, (2.26a)

Euu ≤ Fu. (2.26b)

In order to obtain the control signal at each sample time, an open-loop optimization

problem is introduced. The performance measure or cost function is typically a quadratic

function based on the l2 − norms of the input and output or states deviations from the

desired values and includes separate weight matrices for each part to allow the designers

to make trade-offs [35]. The quadratic cost function leads to solving efficient optimization

problems which are quadratic programming (QP) optimization [13]. By defining positive

definite weight matrices Q � 0 and R � 0, the control signal is obtained by minimizing the

following infinite horizon cost function at sample time k

Jk =
∞∑
n=0

yTk+n|kQyk+n|k + uTk+n|kRuk+n|k. (2.27)

It is obvious when there are no constraints, the control design problem is the same as

linear quadratic regulator (LQR) problem in which the control signal is obtained by the

solution of an algebraic Riccati equation (ARE) [5].

A finite prediction and control horizons must be chosen to define the finite horizon cost
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function. Then the cost function can be written as follows

Jk =
N−1∑
n=0

yTk+n|kQyk+n|k + uTk+n|kRuk+n|k, (2.28)

where N is the prediction horizon. In this thesis, Np and Nu are considered equal N .

Throughout this thesis, as an assumption, the exact states are available at each sample

time, that is, xk|k = xk.

The basic MPC design can be summarized as follows [35]

1. Measure xk|k,

2. Solve the optimization problem given in 2.28 to obtain u.|k,

3. Apply the first element of the obtained control signal uk = uk|k,

4. Wait for the new sampling time k + 1, then go to (1.).

2.7 Quadratic Programming for MPC Design

According to [31], an optimization problem is called a quadratic programming (QP) if the

objective function is quadratic, and the constraints are affine. A quadratic program can be

written as
minimize 1

2
xTHx+ qTx+ r

subject to Gx � h

Fx = b,

(2.29)

where, H, G, and F are compatible matrices, q, h, and b are vectors. Also, r is an scalar.

Without loss of generality, H is assumed to be positive definite matrix (H = HT � 0).

To make the appropriate form of the optimization problem in (2.28) for quadratic pro-

gramming, assuming the current state xk|k = xk is available, then the future states, control

inputs and outputs are denoted as

X = [xTk|k, x
T
k+|k, . . . , x

T
k+N−1|k]

T , (2.30a)

U = [uTk|k, u
T
k+|k, . . . , u

T
k+N−1|k]

T , (2.30b)

Y = [yTk|k, y
T
k+|k, . . . , y

T
k+N−1|k]

T . (2.30c)
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The compact matrix form of the predicted states and output are given as

X = Axk|k + BU, (2.31a)

Y = CX, (2.31b)

where A ∈ <nN×n, B ∈ <pN×mN , and C ∈ <pN×nN are defined as [38]

A =



I

A

A2

...

AN−1


, (2.32a)

B =



0 0 0 · · · 0

B 0 0 · · · 0

AB B 0 · · · 0
...

. . . . . . . . .
...

AN−2B · · · AB B 0


, (2.32b)

C =


C 0 · · · 0

0 C · · · 0
...

. . . . . .
...

0 · · · 0 C

 . (2.32c)

Now by substituting the predicted outputs and inputs in (2.28), we can have a convex

optimization problem in the QP form. To this end, the weighting matrices are defined as

the block diagonal matrices with N blocks. They are given as

Q =


Q 0 · · · 0

0 Q · · · 0
...

. . . . . .
...

0 · · · 0 Q

 , (2.33a)
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R =


R 0 · · · 0

0 R · · · 0
...

. . . . . .
...

0 · · · 0 R

 . (2.33b)

Now, the optimization problem in (2.28) can be as

minimize
U

Y TQY + UTRU

subject to EuU ≤ Fu
ExX ≤ Fx,

(2.34)

where, Fu = (FT
u , FT

u , . . . , FT
u )T and Fx = (FT

x , FT
x , . . . , FT

x )T represent the imposed input

and output constraints whose number of rows equal the number of constraints and number

of columns equal the prediction horizon, N .

By substituting (2.31) into (2.34), the final quadratic programming can be obtained as

follows
minimize

U
UT (ATCTQCTA+R)U + 2UTBTQCAxx|x

subject to EuU ≤ Fu
ExB ≤ Fx − ExAxk|k,

(2.35)

It is interesting to note that the optimization problem in (2.35) will be solved analytically

if it is an unconstrained problem or has the equality constraints. For the unconstrained case

the global optimal solution that will give a minimum of the cost function can be readily

obtained as

U = −(ATCTQCTA+R)−1BTQCAxk|k. (2.36)

By considering the first m rows of the optimal solution in (2.36), the optimal state

feedback control law can be written as follows

uk = Fxk|k. (2.37)

where F inRm×n is state-feedback gain matrix. In this case by considering N = ∞, the

solution is the optimal linear quadratic controller.
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2.8 MPC Stability Analysis

Although the model used in (2.35) is linear, the constraints introduce the nonlinearities which

necessitate the use of Lyapunov stability. A lot of research works have been devoted to MPC

stability analysis. However, there is no general and unique stability theory developed for

MPC. A comprehensive survey on stability theory for MPC can be found in [11]

To ensure the closed-loop stability for MPC, one has to define a terminal cost function,

Φ(x), terminal constraint set, Xf , and nominal controller, L(x) = Lx so that they satisfy

the following assumptions [11]

1. Xf ⊂ X , Xf is closed and contains origin (0),

2. ∀x ∈ Xf , L(x) ∈ U ,

3. ∀x ∈ Xf , Ax+BL(x) ∈ Xf ,

4. Φ(0) = 0, and ∀x 6= 0, Φ(x) ≥ 0,

5. ∀x ∈ Xf , Φ(Ax+BL(x))− Φ(x) ≤ −xTQx− L(x)T (x)RL(x).

Assumptions 1 and 2 imply that the state constraint and the control constraint are

satisfied in Xf . Assumption 3 means that Xf is a positively invariant set under L(.). Also,

Assumptions 4 and 5 signify that Φ(.) is a Lyapunov function.

Using the above-mentioned assumptions, the following optimization problem will provide

asymptotic stability for an MPC controller

minimize
U

N−1∑
n=0

xTk+n|kQxk+n|k + uTk+n|kRuk+n|k + Φ(xk+N |k),

subject to uk+n|k ∈ U
xk+n|k ∈ X
xk+N |k ∈ Xf .

(2.38)

Providing that the states start in Xf , and uk = L(xk) is used as the controller, it is

obvious that uk ∈ U , and xk+1 ∈ Xf ⊂ X . And Assumption 5 can be written as

Φ(xk+1)− Φ(xk) ≤ −xTkQxk − uTkRuk. (2.39)
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Summing up both sides of this inequality from time instant k to infinity

Φ(x∞)− Φ(xk) ≤
∞∑
n=0

−xTk+nQxk+n − uTk+nRuk+n, (2.40)

and letting x∞ = 0, based on the terminal cost definition Φ(x∞) = 0 yield the upper bound

of the quadratic function as

∞∑
n=0

xTk+nQxk+n + uTk+nRuk+n ≤ Φ(xk). (2.41)

Now, it can be concluded that the terminal cost function, Φ(x) is the upper bound for

infinite horizon cost function at sample time k.

There are a variety of different methods to define a terminal cost function, terminal

constraint set, and nominal controller [5, 11, 39–41]. Ideally, the terminal cost Φ(.) can be

chosen as a quadratic terminal cost Φ(x) = xTPx, where P ∈ Rn, and P � 0. In the case of

stable system, a stabilizing controller is F (x) = 0 which satisfies the control constraints for

all states, that is, Xf = Rn, and then Assumption 5 simplifies as

xTkA
TPAxk − xTkPxk ≤ −xTkQxk. (2.42)

Then the following statement can be obtained as

ATPA− P � −Q. (2.43)

Therefore, to design the stable MPC, a Lyapunov equation is solved to find P at each

sampling time.

2.9 LMI Based Robust MPC Design

When a control system is robust it means that it should provide the acceptable level of

stability and performance in the presence of uncertainties. Designing a controller for a

system with both constraints and uncertainties is usually challenging. In this case, the

robust optimization methods must be used to design MPC. When an optimization problem

includes uncertainty in cost function and constraints, it is called robust optimization which
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can be defined as follows

minimize
x

max
w

f(x,w)

subject to g(x,w) � 0 ∀w ∈ W ,
(2.44)

where x is the design variable vector, and w is the uncertain variable. In the literatures,

this optimization problem is also known as Minimax optimization problem which leads to

minimizing the worst-case value of the cost function[23].

In order to design the MPC for polytopic model, the goal is to find a linear state feedback

uk = Fxk that minimizes an upper bound of the worst-case infinite horizon quadratic cost

in (2.41), which is the function xTkPxk [35]. Now (2.39) can be rewritten as

xTk+1Pxk+1 − xTkPxk ≤ −xTkQxk − uTkRuk, (2.45)

by adding up both left and right-hand side from 0 to∞ and inserting a linear state feedback

uk = Lxk, the following matrix inequality will be obtained as

(Ak +BkF )TP (Ak +BkF )− P � −Q− F TRF, (2.46)

where Ak and Bk are system matrices obtaining by TP model transformation from all possible

vertices at sampling time. Now, by converting (2.46) to LMIs matrices P and F can be

attained.

2.10 Summary

In this chapter, a brief literature review on LPV models, MPC design and stability analysis

are presented. Also, the LMIs technique as a useful method to solve the convex optimization

problem is addressed in this chapter.

In the following chapters, a robust and real-time methods will be introduced to design

the MPC for nonlinear systems using robust optimization and LMI techniques.
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Chapter 3

Shimmy Vibration Control Using

Robust MPC

The development of the robust control systems is owing to the fact that there is usually a

source of uncertainty in the system modeling, e.g. disturbance, unmodeled dynamics, param-

eter uncertainty and measurement noise. Some characteristics such as stability, sensitivity,

and robustness are defined to appraise how a control system can deal with uncertainty. A

control system is called robust when the stability is maintained and the performance speci-

fications are met in the presence of a specified uncertainty range [42]. The main objective of

this chapter is to propose sufficient Lyapunov stability and stabilization criteria, based on

the mentioned methods in Chapter 2, for LPV systems with probabilistic uncertainty.

3.1 Introduction

Robust control is a synthesis that optimizes worst-case performance specification and iden-

tifies worst-case parameters while the plant remains varying in some specified set. The

uncertain model appears when the system parameters are not precisely known, or may vary

over a given range. In [43], a Robust MPC (RMPC) synthesis is proposed that allows ex-

plicit incorporation of the description of plant uncertainties. In addition, the problem of

minimizing an upper bound on the worst-case is reduced to a convex optimization involving

LMIs. It has been proved that the solution of the LMI optimization problem, which is the

receding horizon state-feedback control, can robustly stabilize the set of uncertain plants.

Motivated by [43], Cuzzola et al.,[44] presented a new approach based on the use of several
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Lyapunov functions, each of which corresponds to a different vertex of the uncertainty’s

polytope. Wada et al., [45] proposed a method for synthesizing the MPC law for Linear

Parameter Varying (LPV) systems by using the Parameter Dependent Lyapunov Function

(PDLF) and claimed less conservative control performance. Also, the computational load

involved in RMPC is a challenging problem in an on-line RMPC application. To deal with

this drawback, a modified strategy is proposed here to stabilize the LPV system with reduced

computational load.

To investigate the stability and robustness of the proposed method, the RMPC is used

to suppress the shimmy vibration which is one of the major concerns in the aircraft landing

gear design. The kinetic energy of the forward motion of the aircraft provides the energy

for this type of vibration, which leads to the self-excited torsional oscillation of tires about

the vertical axis [46]. Also, shimmy vibration may result in instability. This oscillatory

motion may also be induced by the forces produced by runway surface irregularities and

non-uniformities of the tires. The shimmy vibration typically has a frequency range between

10 to 30 Hz [47]. The analysis of shimmy formation can be found in [46–48].

In this chapter, the aircraft landing gear shimmy dynamics model presented in [49, 50]

is studied with the following variable parameters; caster length, taxiing velocity and spring

stiffness. The considered linearized landing gear system is a typical Linear Parameter Varying

system, whose state-space matrices are functions of those varying parameters. Using the TP

model transformation method given in Chapter 2, a discrete polytopic LPV model for the

aircraft landing gear system is easily obtained.

The control objective is to steer the yaw angle to zero in order to suppress the shimmy

when the landing gear system is subjected to uncertainties, which are varying taxiing veloc-

ity, and wheel caster length during landing; also, torsional spring stiffness is considered as

the probabilistic uncertain parameter. Therefore, both time-varying and probabilistic un-

certain parameters are considered in this study. The performance of the designed controller

is verified by simulation results, which shows that the proposed RMPC using the LMI ap-

proach leads to finding a solution at each sample time with guaranteed closed-loop stability,

high computational efficiency and strong disturbance rejection ability. Compared with the

designed RMPC dealing with only one time-varying parameter (taxiing velocity) [49], the

proposed RMPC can handle two time-varying parameters, i.e. caster length, taxiing velocity

and one probabilistic uncertain parameter, i.e. spring stiffness.

The chapter is organised as follows. Section 3.2 is devoted to describing a modified
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RMPC algorithm for a LPV system. TP model transformation method is given in Section

3.3. Section 3.4 presents shimmy model and analysis for typical landing gear. The simulation

results of the proposed control strategies in shimmy suppression are presented to demonstrate

the control performance and the computational efficiency in Section 3.5. Concluding remarks

are presented in Section 3.6.

3.2 Robust MPC Design

Consider the LPV system (2.2) subjected to the input and output constraints

||uk+i|k||22 ≤ umax, (3.1a)

||yk+i|k||22 ≤ ymax, (3.1b)

where k is the time instant, umax is the upper bound on input, ymax is the upper bound

on output, and i = 0, 1, ... is the future sample time. The control objective is to find a

control law u(k), so that the state variables, x(k), can be steered to zero in desirable time.

The control signal is updated at each sampling instant via the minimization of the finite

robust objective performance with respect to the uncertain parameters and constraints (3.1)

at each sampling instant k. Using Minimax optimization method, the objective function can

be written as follows

minimize
u

max
p

N−1∑
i=0

xTk+i|kQxk+i|k + uTk+i|kRuk+i|k, (3.2)

where, Q ∈ Rn×n and R ∈ Rm×m are positive definite weighting matrices. In the RMPC

design, the Lyapunov function is chosen as the terminal cost function (see Section 2.8) defined

as V (x) = xTk|kPxk|k. Using Assumption 5 given in Section 2.8, one can achieve the optimal

performance objective (3.2) as follows

V (xk+i|k)− V (xk|k) ≤ −xTk|kQxk|k − uTk|kRuk|k. (3.3)

Summing up the above inequality from time instant k to ∞ and x∞|k = 0 yields the

29



following constraint as

∞∑
i=0

xTk+i|kQxk+i|k + uTk+i|kRuk+i|k ≤ V (xx|x), (3.4)

i.e., the Lyapunov function is the upper bound for infinite horizon cost function at sample

time k. Based on (2.46), the problem of designing the controller is to find Pk and Fk where

the control law is uk+i|k = Fkxk+i|k, i ≥ 0. This control law, indeed, minimizes the upper

bound on the robust performance objective function at sampling time, k.

By performing a congruence transformation with Xk = P−1
k � 0 defining

Fk = YkX
−1
k , (3.5)

and applying Schur compliment, the following linear objective minimization problem [43]

will be obtained as

minimize
γk,Xk,Yk

γk (3.6a)

subject to[
1 xTk
xk Xk

]
� 0, (3.6b)


Xk ∗ ∗ ∗

AjXk +BjYk Xk ∗ ∗
Q1/2Xk 0 γI ∗
R1/2Yk 0 0 γI

 � 0, (3.6c)

[
u2
max Yk

Y T
k Xk

]
� 0, (3.6d)

[
y2
maxI (AjXk +BjYk)

TCT

C(AjXk +BjYk) Xk

]
� 0, (3.6e)

where, the output matrix, C, is common for all vertices, and j = 1, 2, ..., L (L is the number

of vertices). Also, the symbol ∗ represents a symmetric structure in LMIs.

Under the above designed closed-loop feedback law, the solution for the optimization

in (3.6a) can be obtained using the LMI technique, which results in stabilizing the LPV

system (3.33) and the state variables are steered to zero. At each sampling time, an optimal
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upper bound on the worst-case performance cost over the infinite horizon is obtained by

forcing a quadratic function of the state to decrease by at least the amount of the worst

case performance cost at each prediction time. Such on-line step-by-step optimization can

lead to asymptotically stable evolution. But for the real-time application, especially for the

shimmy suppression in the landing gear system, the computational efficiency of LMI is very

critical to guarantee the practical implementation of RMPC. To improve the computational

efficiency, one needs to sacrifice the optimal performance to the computational load at each

step.

In order to alleviate the computational load in RMPC, an attempt is made to reduce

the dimension of matrices in LMI Eqs. (3.6b) to (3.6e). Inequality (3.6c) involves the most

computational load since it has to be satisfied by every vertex [Aj, Bj]. It is found that the

matrices in rows 3 and 4 in inequality (3.6c) are directly related to the robust performance

index, which appears at the right hand side of inequality (3.3). The modified RMPC will

trade the optimal performance with the computational load [49].

In order to accomplish the above, a Lyapunov function V (x) = xTk|kPkxk|k is defined

where Pk := βkX
−1
k is a positive definite matrix, which will be obtained by solving the

optimal problem at current time, k. In order to guarantee the asymptotic stability of the

closed-loop system, which is the main objective of controller design, a Lyapunov function for

the closed-loop system must be defined, which is strictly decreasing

V (xk+1|k)− V (xk|k) < 0, (3.7)

and is equivalent to the following inequality

xTk+1|kPkxk+1|k − xTk|kPkxk|k < 0, (3.8)

where the measured state variables at time k+1 are assumed to be equal to the predicted state

variables xk+1|k. In order to guarantee that inequality (3.8) holds, the following inequality

must be ensured

xTk+1|k+1Pk+1xk+1|k+1 < xTk+1|k+1Pkxk+1|k+1. (3.9)

The inequality in terms of Xk+1 and Xk using the definition of Pk can be written as

xTk+1|k+1βk+1X
−1
k+1xk+1|k+1 < xTk+1|k+1βkX

−1
k xk+1|k+1. (3.10)
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The RMPC is designed to make the matrix X−1
k+1 at time k + 1 to be smaller than X−1

k

at time k. This is equivalent to the case where the matrix X−1
k is smaller than the matrix

X−1
k−1. It can be written in the following form by adding an upper bound βI to matrix Xk

Xk−1 ≺ Xk ≺ βkI. (3.11)

Furthermore, to guarantee that inequality (3.8) is satisfied, the right hand side of in-

equality (3.9) needs to satisfy the following inequality

xTk+1|k+1Pkxk+1|k+1 = xTk+1|kβkX
−1
k xk+1|k ≤ xk|kβkX

−1
k xk|k. (3.12)

Substituting xk+1|k = A(p)xk|k+B(p)uk and feedback control uk = Fkxk|k into the above

inequality leads to

xTk|k(A(p) +B(p)Fk)
TβkX

−1
k (A(p) +B(p)Fk)xk|k − xTk|kβkX−1

k xk+1|k+1 ≤ 0. (3.13)

The following inequality will be obtained by using the definition of feedback control gain

in (3.5) and polytopic model defined in (3.36),

L∑
j=1

(wjAj + wjBjYkX
−1
k )TβkX

−1
k

L∑
j=1

(wjAj + wjBjYkX
−1
k )− βkX−1

k � 0, (3.14)

which is equivalent to

L∑
j=1

wj(Aj +BjYkX
−1
k )TβkX

−1
k

L∑
j=1

wj(Aj +BjYkX
−1
k )− βkX−1

k � 0, (3.15)

using the convex hull definition in (2.5), the above inequality holds if the following L in-

equalities hold [16]

(Aj +BjYkX
−1
k )TβkX

−1
k (Aj +BjYkX

−1
k )− βkX−1

k � 0, j = 1, 2, ..., L. (3.16)

Then, the following LMIs will be obtained by applying Schur compliment as[
Xk (Aj +BjYk)

T

Aj +BjYk Xk

]
� 0, j = 1, 2, ..., L. (3.17)
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In summary, the modification of the RMPC given in [49] for LPV system (3.33) subjected

to the input and output constraints can be expressed as the following minimization problem.

minimize
βk,Xk,Yk

βk (3.18a)

subject to[
Xk (Aj +BjYk)

T

Aj +BjYk Xk

]
� 0, (3.18b)

Xk−1 ≺ Xk ≺ βkI, (3.18c)[
u2
max Yk

Y T
k Xk

]
� 0, (3.18d)

[
y2
maxXk (Aj +BjYk)

TCT

C(Aj +BjYk) y2
maxI

]
� 0, (3.18e)

The feedback control gain is obtained as Fk = YkX
−1
k and the control signal is calculated as

uk+i|k = Fkxk+i|k, i ≥ 0.

The detailed step by step control algorithms are summarized as bellow.

Modified RMPC Algorithm:

Given an initial state x0, the controller for LPV system is implemented as

1. Solve (3.6a) for k = 0 to obtain X0 and Y0, subjected to (3.6b) to (3.6e) with initial

condition x0, and constraints on input umax and output ymax. Save the corresponding

X0, Y0.

2. For k = 1 find Yk and Xk by solving minimization problem (3.18a), subjected to (3.18b)

to (3.18e), calculate the feedback gain as Fk = YkX
−1
k and control input as uk = Fkxk

3. Apply the control input uk to the LPV system, and k = k + 1 then go to 2.

As given above, the algorithm starts with solving the time-consuming minimization prob-

lem subjected to LMIs (3.6b) to (3.6e) before the iteration and then switches to the modified

RMPC [51]. The optimization problem outside the loop is solved to obtain the initial X0

which will serve as the lower bound of the next step X1 in the loop. In each step, the matrix
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Xk is solved and used for feedback gain Fk computation. The step-by-step optimization of

the above problem can lead to asymptotically stable evolution.

The proposed algorithm is based on RMPC and the invariant ellipsoid concept [43].

In step 1, the upper bound (γ0) of Lyapunov function for the initial state variables x0 is

minimized and the inequality xT0 P0x0 ≤ γ0 is held. The obtained subset of state space

x ∈ Rn, Xf = {x|xTX−1
0 x ≤ 1} becomes an invariant ellipsoidal terminal constraint set of

state variables. And γ0 also becomes the upper bound of Lyapunov function for system

(3.33) by solving the proposed optimization problem in Step 2.

According to LMI optimization theory [16] the fastest Interior Point algorithms compu-

tational effort grows with N × J3; where N is the total row size of LMIs, and J is the total

number of decision variables. Considering the minimization problem (3.18a), the total row

size of LMIs (3.18b) to (3.18e) has been reduced compared with that of LMIs (3.6b) to (3.6e)

in each iteration. Thus the computational load is significantly reduced.

In summary, consider the LPV system (3.33) with [A(p)|B(p)] varying in a polytope Ω

(Convex Hull) of vertices [A1|B1], [A2|B2], ..., [AL|BL]. Assume that the system is subjected

to input and output constraints (3.1). The state feedback matrix Fk in the control law

uk = Fkxk is given by Fk = YkX
−1
k , where Xk � 0 and Yk are obtained from the solution

to the linear objective minimization problem (3.18a) subjected to LMIs (3.18b) to (3.18e).

Then the obtained control law robustly stabilizes the closed-loop system asymptotically.

3.3 TP Model Construction

The following is briefly presented to construct the TP model transformation of a given LPV

model (the comprehensive details are given in [33]).

Step 1: To construct the TP model, the given LPV model must be discretized over the

transformation space Ω which is a bounded hyper-rectangular space. The uncertain param-

eters of the system vary inside that space: p ∈ Ω : [a1, b1] × [a2, b2] × · · · × [aN , bN ], also,

the weighting functions are defined over this interval. It means that the resulting TP model

is only explicable in Ω.

Then, the hyper-rectangular space must be discretized by defining the grids in Ω to

generate samples. In [33], an equidistance location of the grids is suggested. In this method,

an N–dimensional hyper rectangular equidistant grid–by–grid net over the closed hypercube
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(a) (b)

Figure 3.1: Sampling methods (a) equidistance generated samples, and (b) Hammersley Sequence
Samples.

Ω is generated as follows

gn,mn = an +
bn − an
Mn − 1

(mn − 1), n = 1, . . . , N, (3.19)

where, N is the total number of the variable parameters in Ω. an, and bn are the minimum

and maximum of the closed hypercube elements on each dimension, respectively. Also,

an ≤ gn,mn ≤ bn, mn = 1, . . . ,Mn, stands for the corresponding grid line locations, and Mn

is the number of grids on nth dimension [33].

In this thesis, the quasi Monte-Carlo sampling method, also called Hammersley Sequence

Sampling (HSS) is used to generate samples. This method produce evenly distributed sam-

ple points in the sample space without having a high correlation between the points or not

forming a regular grid. It has an advantage over purely deterministic methods, since, deter-

ministic methods only give high accuracy when the number of samples increases [30]. Figure

3.1 illustrates both equidistance sampling methods and HSS for the same number of sam-

ples. It is evident that HSS method (Figure 3.1b) can cover the space more than equidistance

method (Figure 3.1a). As a result, by using HSS method, a more accurate model can be

attained with the lower number of samples compared with the equidistance method.
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The Hammersley sequence is based on the inverse radix notation. The prime numbers

are usually used as the radix (R). The radix notation of an integer p is calculated as follows

[30]

p = pmpm−1 . . . p1p0, (3.20a)

p = p0R
0 + p1R

1 + · · ·+ pmR
m, (3.20b)

then by reversing the digits of p about the decimal point, a unique fraction between 0 and

1 known as the inverse radix number can be obtained as

ΨR(p) = 0.p0p1 . . . pm, (3.21a)

ΨR(p) = p0R
−1 + p1R

−2 + · · ·+ pmR
−m−1. (3.21b)

The Hammersley point of a k-dimensional hypercube are obtained as

xk(p) =
[ p
N
, ΨR1(p), ΨR2(p), . . . ΨRk−1

(p)
]
. (3.22)

This vector of Hammersley points gives a distributed numbers on the unit hypercube

[0, 1]k. Any given domain, [a, b], can be now generated by mapping the obtained number

between 0 and 1 using HSS.

A simple example is given to show the advantage of HSS over equidistance sampling

method. The following function is considered

f(x) = (1 + x−3
1 + x−1.5

2 )2,

in which the transformation space defined as Ω = [1, 5] × [1, 5]. Both methods are used to

generate the samples with different number of grids. Then, the TP transformation is used

to find the function approximation, f̂(x), and the mean of error between the actual function

and approximated one for different sample numbers are given in Table 3.1. It is obvious that

the computational cost of TP modeling transformation can be reduced by virtue of HSS

instead of equidistance method.
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Table 3.1: The mean of the error between actual function and approximated one.

Methods
Grid Lines

5× 5 20× 20 50× 50
Equidistance 3.14e−2 1.21e−6 3.59e−9

HSS 2.32e−2 1.59e−7 2.41e−11

After generating the sample points in Ω, a vector of grid points can be defined as follows

gm1,m2,...,mN
=


g1,m1

...

gN,mN

 . (3.23)

The discretized system matrix S(p) ∈ R(n+p)×(n+m) is a tensor SD (D stands for ”dis-

cretized”) with the size M1 ×M2 × . . .MN × (n+ p)× (n+m). The elements of SD are

Sm1,m2,...,mN
= S(gm1,m2,...,mN

). (3.24)

Step 2: In this step, HOSVD is executed on the obtained tensor SD. Using (2.14)

SD = S
N
⊗
n=1

Un. (3.25)

where the size of S is I1 × I2 × . . . IN × (n+ p)× (n+m) and In is the number of singular

values and vectors obtained at each dimension. Now the compact HOSVD or the reduced

HOSVD can be used to reduce the size of the original tensor.

Step 3: The final step of TP model transformation is to find the weighting functions. In this

method the unitary matrix Un gives the weighting functions. The ithn column vector,un,in

, of the matrix Un determines the ithn column vector wn,in(pn) of wDn (pn) evaluated at the

discretized value of pn = gn,in .

The corresponding tensor SD for any parameter p becomes

SD =

I1∑
i1=1

I2∑
i2=1

· · ·
IN∑
iN=1

N∏
n=1

wn,in(pn)Si1,i2,...,iN . (3.26)

In literatures, there are different types of weighting functions [18, 21, 52]. In this thesis,

the weighting functions have the following properties
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1. The sum of the weighting functions for all p ∈ Ω is 1, that is,
In∑
in=1

win(p) = 1. Therefore,

the weighting function is Sum Normalized (SN).

2. The weighting functions values for all p ∈ Ω is Non-Negative (NN), win(p) ≥ 0.

In this case, SN and NN types of weighting functions, the TP model including the LTI

vertices which make a convex hull of the system matrix S(p).

In the following sections, the landing gear model will be presented, then the proposed

method will be used to suppress the shimmy vibration of the landing gear.

3.4 LPV Shimmy Modeling

Shimmy vibration can lead to serious problems such as excessive wear, shortened life cycle

of gear parts, safety concerns, and discomfort for pilots and passengers. In order to sup-

press shimmy motion, shimmy damper is used in Boeing 737 and Airbus A-320 aircraft as

a conventional preventive measure. However, as mentioned in [48], shimmy damping re-

quirements often conflict with good high-speed directional control; furthermore, once the

landing gear design is completed, the structural parameters for shimmy suppression cannot

be changed. Hence, when external disturbances or uncertain parameters arise in the landing

gear system, no further action can be taken. In some operation situations such as worn

parts, severe climate, and rough runway, active control strategy can be effective for shimmy

vibration control. With the advent of high-speed and highly reliable microprocessors used

in controller implementation, the idea of actively controlled landing gear has gained new

momentum [49]. Even though the concept of active landing gear is not new (started in the

seventies), no production aircraft is as yet equipped with such a system, as reported in [50].

Furthermore, there is scant research on developing the control strategy that can deal with

time varying parameters and the uncertainty of landing gear. The following, the dynamic

model of the landing gear is presented.

An aircraft landing gear model described in [49, 50] is considered, and also shown in

Figure 3.2. According to [49], the state-space equations of the linearized model can be

written as

ẋ(t) = Ax(t) +Bu(t), (3.27a)

z(t) = Cx(t), (3.27b)
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(a) (b)

Figure 3.2: (a) Side view and (b) top view of Landing Gear model.

where,

x =

ψψ̇
y

 , (3.28)

is the state vector of the system, including, yaw angle, ψ (rad), yaw rate, ψ̇ (rad/s), and

lateral deflection, y (m). z is the output of the system, yaw angle. Also, matrix A ∈ R3×3,

A ∈ R3×1, and C ∈ R1×3 are defined as follows

A =

 0 1 0

−K
Iz
− c
Iz

+ κ
V Iz

Fz

Izσ
(CMα − eCFα)

V e− a −V
σ

 , (3.29a)

B =

 0

ke

0

 , (3.29b)

C =
(

1 0 0
)
. (3.29c)

In this model, taxiing velocity, V (m/s), wheel caster length, e (m), and torsional spring con-

stant, K (N.m/rad), are considered as variable parameters. The values of fixed parameters

are given in Table 3.2.

The landing gear is assumed to taxi along the runway with a varying taxiing velocity

from 80m/s to 20m/s within 3 seconds. Taxiing velocity is critical in the shimmy analysis
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Table 3.2: Parameters of the model.

Parameter Value Unit

Half contact length, a 0.1 m

Moment of Inertia, Iz 1 kg.m2

Vertical force, Fz 9000 N

Torsional damping constant, c, 20 N.m
rad.s

Side force derivative, CFα 20 1
rad

Moment derivative, CMα -2 m
rad

Tread width moment constant, κ -270 N.m2

rad

Relaxation length, σ = 3× a 0.3 m

Moment constant, ke 10000 N.m
volt

[46]. It was reported in [49], lower taxiing speed leads to higher stability and the landing

gear becomes stable at the lower speed of 10 knots (5.144m/s). It is also reported in [48]

that the shimmy vibration increases with raising the velocity. Before the aircraft touches

down, forward velocity is supposed to be lower than 150 knots (77.2m/s).

In addition, landing gear designers consider the caster length, e, as a time varying pa-

rameter [48], and it is now treated as another uncertain parameter, which belongs to the

following set

e ∈ [0.1, 0.5] . (3.30)

Also, the torsional spring constant, K, is considered as an uncertain parameter. For this

parameter, Gaussian probability distribution with the mean value of 100000N.m/rad and

the standard deviation equals to 8500 is considered. The probability distribution function

(PDF) of this uncertain parameter is shown in Figure 3.3.

The vector of uncertain parameters is defined as p = {V, e, K} ∈ Ω, which is the

element of the closed hypercube Ω = [Vm, VM ] × [em, eM ] × [Km, KM ] ⊂ R3. The value of

the parameters in Ω are considered as Vm = 20, VM = 80, em = 0.1, eM = 0.5, Km = 75000,

and KM = 125000.

In order to investigate the uncertainties effect on stability, 100 samples are generated

using HSS method from Ω. It should be noted that the Gaussian probability distribution

shown in Figure 3.3 is used to generate the probabilistic uncertain parameter K samples.

The open-loop poles of 100 samples are shown in Figure 3.4. The obtained results show that
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Figure 3.3: PDF of the torsional spring constant (K).

Figure 3.4: Position of the uncertain shimmy open-loop poles.
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Table 3.3: The mean of the error between actual function and approximated one.

Weighting functions No. Mean of Error
3× 2× 2 0.011
2× 2× 2 0.013
1× 2× 2 0.014

36 out of 100 systems have poles on the right half plane, it means that the probability of

instability for this system is 36% with respect to considered uncertainties. Also, most of

the dominant poles are located close to the imaginary axis that lead to oscillatory behavior

with large overshoot. Therefore, the designed controller should provide stable and robust

performance.

The discrete time model instead of continuous time dynamic model given in 3.27 is used

to design the MPC. The discrete time landing gear state-space model can be written as

x(t+ 1) = Adx(t) +Bdu(t), (3.31)

where Ad, and Bd are discrete time system and input matrices defined as follows

Ad = ehA, Bd = A−1
(
ehA − I

)
B, (3.32)

and h is the sample interval equal to 0.01 in this study.

In order to generate the hyper-rectangular N-dimensional space grid and using the TP

model transformation, 100 samples are generated on each dimension using HSS methods for

discretization.

Using (3.32) to discretize the system, makes both system and input matrices time varying.

The system matrix of the obtained LPV model can be written as

S (p) =
(
Ad (p) Bd (p)

)
. (3.33)

As mentioned before, the density of the sampling grids is considered as 100× 100× 100.

After using HOSVD method on each 3-dimension of the tensor S ∈ R100×100×100×3×4, the
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nonzero singular values in each dimension are obtained as follows

σ
(1)
1 = 269.4 σ

(2)
1 = 268.1 σ

(3)
1 = 269.3

σ
(1)
2 = 0.061 σ

(2)
2 = 26.2 σ

(3)
2 = 7.7

σ
(1)
3 = 0.009

A trade-off between complexity and accuracy should be made to reduce the computational

load of the control design. Three different models can be obtained based on the obtained

singular values. If all of the nonzero singular values are kept, the TP model has 3×2×2 = 12

weighting functions which is same number as vertices. Also, the models with 2×2×2 = 8 or

1× 2× 2 = 4 vertices can be extracted by discarding σ
(1)
3 or both σ

(1)
2 and σ

(1)
3 , respectively.

The mean of error between actual LPV model and TP models which are tested for 100

samples are given in Table 3.3. As it can be seen, the error between compact HOSVD model

(3×2×2) and the reduced one (1×2×2) is small; therefore, trading accuracy with complexity

and choosing the small number of vertices can result in designing a real-time MPC. The error

between the compact tensor S and the reduced one, Ŝ, by discarding singular values σ
(1)
2 ,

and σ
(1)
3 can be approximated by

‖S − Ŝ‖2 ≤ (σ
(1)
2 )2 + (σ

(1)
3 )2 ≈ 0.003. (3.34)

Therefore, the results show that the aircraft landing gear model can be approximately

given in the HOSVD-based polytopic model form with minimum 1 × 2 × 2 = 4 linear time

invariant (LTI) vertex models. The sum normalization (SN) and non-negativeness (NN)

type weighting functions are used [21] to obtain the convex TP model which can satisfy LMI

control design conditions. The weighting functions for all three models are illustrated in

Figure 3.5. The LTI system matrices of the polytopic TP model are

Ad1,1,1 =

 0.94 0.001 −0.183

−121.61 0.83 −345.69

0.018 0.0004 0.76

 ,

Bd1,1,1 =

0.048

93.75

0.022


(3.35a)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.5: SNNN type weighting functions of the TP model for, (a-c) 3 × 2 × 2, (d-f) 2 × 2 × 2,
and (h-i) 1× 2× 2 vertices models.
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Ad1,1,2 =

 0.96 0.001 −0.184

−85.01 0.85 −348.13

0.027 0.0004 0.76

 ,

Bd1,1,2 =

0.048

94.38

0.022


(3.35b)

Ad1,2,1 =

 0.94 0.001 −0.057

−118.75 0.91 −109.29

0.045 0 0.84

 ,

Bd1,2,1 =

0.049

96.71

0.001


(3.35c)

Ad1,2,2 =

 0.96 0.001 −0.057

−80.97 0.93 −110.05

0.045 0 0.84

 ,

Bd1,2,2 =

0.049

97.36

0.001


(3.35d)

The discrete time TP model of the aircraft landing gear system can be written as follows

x(t+ 1) = S(p)

(
x(t)

u(t)

)
=

2∑
i=1

2∑
j=1

w2,i(e)w3,j(K)(Ad1,i,jx(t) +Bd1,i,ju(t)), (3.36)

where w2,i, i = 1, 2, and w3,i, j = 1, 2, are weighting functions, also, w1 is the weighting

function for V which is equal to 1 for all values of V (shown in Figure 3.5g).

The system [Ad(p)|Bd(p)] varies in a polytope Ω (Convex Hull) of vertices [Ad1,1,1|Bd1,1,1 ],

[Ad1,1,2|Bd1,1,2 ], [Ad1,2,1|Bd1,2,1 ], and [Ad1,2,2|Bd1,2,2 ], which satisfies convexity conditions in 2.5.

The control objective is to design a RMPC for the LPV system based on the LTI vertex

models.
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(a) (b)

(c) (d)

Figure 3.6: Lateral deflection (m) in taxiing for (a) vertex 1, (b) vertex 2, (c) vertex 3, and (d)
vertex 4 without controller.

3.5 RMPC Simulation Results

The modified RMPC algorithm presented in Section 3.2 is applied on the linear landing gear

model. The objective of shimmy control is to asymptotically suppress yaw vibration with

low overshoot and short settling time during the landing process and to robustly stabilize

the landing gear system.

Figure 3.6 shows the shimmy vibration of the landing gear in lateral deflection without

the controller for different vertices in (3.35). It can be seen that two vertices are stable

(vertex 1 and 2) with the high frequency oscillation, and two vertices are unstable (vertex

3 and 4). Therefore, the designed state-feedback controller should stabilize the unstable

landing gear system with good high-speed directional control.
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Figure 3.7: Yaw angle (rad) in taxiing.

Figure 3.8: Lateral deflection (m) in taxiing.

In order to design the controller, the control input and output constraints are consid-

ered as 2.5 volt and 1 rad, respectively. The initial conditions for the state is [ψ, ψ̇, y]T =

[1, 0, 0.05]T . Also, weight matrices for the robust MPC are chosen as Q = I3×3 and R = 1.

In shimmy control design, all involved LMIs are effectively solved by Matlab + YALMIP
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Figure 3.9: Control input (volt).

Toolbox [24].

The simulation results are shown in Figures 3.7, 3.8, and 3.9. It can be seen that both

yaw angle and lateral deflection approach to zero less than 0.15 sec. The landing gear body

should not have large shimmy, and the shimmy oscillations should dissipate as quickly as

possible; therefore, the designed controller demonstrates promising performance and robust

stability in the presence of uncertainties. Also, the results from [49] are shown in Figures 3.7

and 3.8. It can be seen that the state convergence is almost the same as that in [49] with

smaller overshoot when dealing with taxiing velocity. However, it should be noted that in

[49] only taxiing velocity was considered as the varying-parameter, and in this thesis three

varying-parameters are considered. The proposed RMPC in [49] cannot handle the case

when the system is subjected to varying caster length and torsion spring.

In order to investigate the disturbance rejection ability of the proposed method, the

system is subjected to external disturbance. In this study, 0.2 volt step disturbance on the

input is considered at time 0.1 sec, which lasts for 10 time steps. The simulation results

are shown in Figures 3.10a, 3.10b, and 3.10c. It is evident that the controller can deal with

disturbance and stabilize the system with the small overshoot and settling time.

According to the simulation results, the proposed method can be effectively used to design

the robust MPC for the LPV system, which shows good performance and robust stability.
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(a) (b)

(c)

Figure 3.10: (a)Yaw angle, (b) Lateral deflection, and (c) Control input with step disturbance at
0.1 sec.
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3.6 Conclusion

In this chapter, an active control strategy is proposed for landing gear shimmy control using

RMPC. Also, the TP model transformation and HOSVD technique are used to reduce the

computational load of the control design. A modified RMPC algorithm using the LMI

method is proposed to improve the computational efficiency in the optimization problem.

Introducing RMPC state feedback, the control law is calculated by step-by-step optimization

and the LMI solutions can be found to stabilize the LPV system with disturbance rejection

ability.

The simulation results demonstrate that the modified RMPC can effectively suppress

shimmy vibration for the nominal operation range of an aircraft during landing when the

taxiing velocity changes from 80m/s to 20m/s, and wheel caster length varies between

0.1m and 0.5m. Also, Gaussian probability distribution is considered for the torsional

spring constant.
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Chapter 4

Real-Time MPC for Image-Based

Visual Servoing

A well recognized imperfection of MPC is that it cannot be implemented in the systems with

fast dynamics, where the sampling interval is small. However, there are a few techniques for

applying fast MPC which are mainly based on the computing the control law offline. Then,

the on-line controller can be implemented as a lookup table [53]. This method works well

when there are few constraints, small state and input dimensions, and short time horizons.

Moreover, this method is very sensitive to the disturbances and uncertainties. In other words,

it cannot work robustly to deal with th disturbance or uncertainty in real time; because the

lookup table is designed offline. While the system is working, any disturbance or uncertainty

may deteriorate the controller performance.

The major goal of this chapter is to propose a real-time MPC method based on the

method proposed in Chapter 3 and on-line optimization technique for a fast dynamic system

which can handle uncertainty and be executable on an experimental set-up. For this purpose,

a 6 degree-of-freedom (DOF) manipulator and Image-Based Visual Servoing Control are used

to apply real-time MPC.

4.1 Introduction

Visual servoing has been used extensively in robotics as a solution to make the machines

faster and more dexterous [54]. It is, also, referred to as the use of computer vision data to

control the motion of a robot in many applications such as robotic assembly [55], unmanned
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aerial vehicle [56], robotized endoscope tracking [57], ultrasound probe guidance [58], etc.

Typical visual servoing controls can be classified into three categories, position-based visual

servoing (PBVS), image-based visual servoing (IBVS) and hybrid visual servoing [54, 59].

The main idea of a visual servoing system is illustrated in Figure 4.1. The system consists

of two separate controllers which are Visual Servoing and Robot Controller. The visual

servoing block uses a controlling command to generate a velocity screw as the control input

for the robotic systems which leads to the desired joint velocity. The robot controller takes

the signal produced by the visual servoing block as its desired path and the robot controller

drives the robot to follow that path [60, 61].

The classical IBVS uses a set of geometric features such as points, segments or straight

lines in image plane as image features [62]. The controller is designed using the inverse (or

pseudo-inverse) of the image Jacobian matrix to obtain the control errors in Cartesian space,

and normally the proportional control law is applied to achieve a local convergence to the

desired visual features. This proportional controller is very easy to implement; however,

its drawbacks are its possible unsatisfactory behavior due to the difficulty of constraint

handling. Also, the stability of the system is only guaranteed in the region around the

desired position, and there may exist image singularities and image local minima, leading

to IBVS performance degradation. Moreover, if the errors between the initial position and

the desired one are large, with the visibility constraint, the camera motion may be affected

by loss of features, or conflict with the robot physical limitations, or even lead to servoing

failure. Hence numerous published literatures focus on improving the control performance

and overcoming the visibility problem [63, 64].

To solve the problem of image singularities, finding the suitable visual features such as

Polar [65], cylindrical [66], spherical [67] coordinate systems and moment features [68], for

visual servoing is a good solution. In [69], authors used Takagi-Sugeno fuzzy framework

to model IBVS, and they could handle singularity. However, these methods still have not

addressed the constraints explicitly which are crucial for real systems control designing [70].

Also some advanced control techniques have been applied in visual servoing controller design

[71–74]. A switching controller is proposed in [71] to realize a large displacement grasping

task. In [72], a robust fuzzy gain scheduled visual servoing with sampling time uncertainties

has been reported. An MPC method based on the discrete time visual servoing model is

introduced to obtain the convergence of robot motion by nonlinear constraint optimization in

[73]. Another predictive control for constrained IBVS is proposed in [74]. The authors solve
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Figure 4.1: General Visual Servoing Approach.

a finite horizon open-loop constrained optimization problem and demonstrate the results

in simulation. A robust MPC based on the polytopic model of IBVS has been proposed

in [75] with the fixed depth parameter. In [75], the optimization time for calculating the

control signal exceeds the real system sampling time. Hence, the proposed controller is not

implemented on-line and cannot be applied for the real system. To our best knowledge, very

few experimental results have been obtained on this topic.

As mentioned, the major drawback of MPC is long computational time required to solve

the optimization problem which often exceeds sampling interval in real time situation [13]. In

order to make MPC implementable in practice for the fast dynamic systems, the optimization

problem must be solved within the time dictated by the sampling period of the system.

The major contribution of this chapter is to design an on-line RMPC which allows explicit

incorporation of plant uncertainties and constraints when system parameters vary over a

given range. In this chapter, based on the chosen image features, image points and the

discretized model of image Jacobian matrix, a RMPC law is formulated for IBVS. Using the

discretized relationship between the time derivative of image features and camera velocity,

a discrete time model of the visual servoing system is obtained. In the whole working space,

the image Jacobian matrix varies with the bounded variable parameters of image point

coordinates and the object depth. Therefore, it is considered as LPV model. A polytopic

model of a discrete time model for the visual servoing system is obtained using TP model

transformation described in Chapter 2, from LPV model. Hence, the robust control signal

can be calculated at every sampling time, by performing convex optimization involving LMIs

in MPC [24].
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Using RMPC law, robot workspace limitations, the visibility constraints, parametric

uncertainties and actuator limitations can be easily posed as inequality constraints associated

with the output and the input of the visual servoing model. Since the proposed IBVS

controller avoids the direct inverse of the image Jacobian matrix, some intractable problems

in the classical IBVS controller, such as large displacement from the initial pose to the desired

pose of the camera, can be solved by this method. At the same time, the visual features are

kept in the image plane even when both the initial and the desired image features are close

to the field of view (FOV) boundary. The real time experimental results demonstrate the

effectiveness of this method.

The chapter is organized as follows; in Section 4.2, the image-based visual servoing model

is established to predict the future behavior of the system. Then a real-time MPC algorithm

for IBVS is given in Section 4.3. In Section 4.4, the experiments on an eye-in-hand 6 DOF

robot illustrate the effectiveness of the proposed approach. Finally, conclusions are given in

Section 4.5.

4.2 LPV Visual Servoing Model

In this work, MPC is used to control the image-based visual servoing system for a robotic

system consists of a 6 DOFs manipulator with a camera installed on its end-effector. The

target object is assumed to be stationary with respect to robot’s reference frame. The

constrained finite-horizon optimal controller design is based on the optimization technique

in which the current control action is obtained by minimizing the cost function on-line [76].

The cost function includes the current measurement, the prediction of the image future states

and the current and future control signals based on a discrete time model of the system [77].

The purpose of measuring the states and considering them at each time step is to compensate

for unmeasured disturbances and model uncertainty [8].

To control the system using MPC, it needs to find a model whereby the future behavior

of the image feature vector can be predicted. The relationship between the time variation

of the image feature vector of the predictor, ṡm, and the camera velocity screw, Vc can be

written as [54]

ṡm = LsVc, (4.1)
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in which Vc is the control signal i.e. the camera velocity screw written as follows

Vc = [vcx, vcy, vcz, ωcx, ωcy, ωcz]
T, (4.2)

also, Ls ∈ Rκ×6 is named as the image Jacobian or the interaction matrix.

Suppose the coordinate of a point in 3D space represented in the camera frame is defined

as Γ = (X, Y, Z), and projected coordinate of γ on the camera frame is defined as γ = (x, y)

[78]. Moreover, assuming that the camera projects the 3D geometry with a perspective

projection model, Γ is projected to γ by

γ =

[
x

y

]
=

1

Z

[
X

Y

]
. (4.3)

The image space coordinate can be calculated using the pixel coordinate of the image

using the following equation

γ = B−1m, (4.4)

where m = (u, v) is the pixel coordinate of the point γ, and B is the intrinsic parameter

matrix

B =

αx β u0

0 αy v0

0 0 1

 , (4.5)

where αx and αy are the scale factors in x and y directions, respectively. u0 and v0 are the

principal points of the image and β is the skew coefficient between the camera’s x and y axis

and it is often zero. These parameters are achieved through a camera calibration process

[79].

Taking the time derivative of equation (4.3)[
ẋ

ẏ

]
=

[
Ẋ
Z
− XŻ

Z2

Ẏ
Z
− Y Ż

Z2

]
, (4.6)

where Γ̇ = (Ẋ, Ẏ , Ż) is the velocity of the 3D point in space with respect to camera frame,

and γ̇ = (ẋ, ẏ) is the velocity of the image of Γ in the image space. The following equation

can be used to find the relationship between the camera motion and the features
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Γ̇ = −vc − ωc × Γ, (4.7)

Now by substituting (4.3) and (4.6), the interaction matrix is obtained as follows [54]

Ls =

[
− 1
Z

0 x
Z

xy −(1 + x2) y

0 − 1
Z

y
Z

1 + y2 −xy −x

]
, (4.8)

where x and y are the projected coordinate of the feature position on the camera frame, and

Z is the depth of the feature with respect to camera frame. Usually the depth parameter

Z in the image Jacobian matrix is assumed to be known [80]. However, in the monocular

eye-in-hand configuration, it is difficult to measure the depth on-line. Thus, this parameter

can be considered as an uncertain variable which varies over a given range. Therefore, all

the parameters in the image Jacobian matrix are time varying variables. Thus, Ls is the

function of the vector of time-varying parameters defined as p(t) = {x, y, Z}. Here, p(t) ∈ Ω

is the element of the closed hypercube Ω = [xm, xM ] × [ym, yM ] × [Zm, ZM ] ⊂ R3, in which

xm, xM , ym, and yM , are the minimum and maximum ranges of the image point coordinates,

and Zm, and ZM are the minimum and maximum depths between the object and the camera,

respectively.

In order to apply the controller in real–time, the accuracy must be traded with the

computational load at each sampling time. Therefore, instead of using the given LPV model,

its TP model is used for control design [33]. For the considered time–varying parameter

vector, p(t), a convex combination for the polytopic vertex form of the image Jacobian

matrix can be obtained for the LMI–based RMPC controller design.

As explained in Chapter 2, the first step of obtaining TP model is to discretize a given

LPV model over the transformation space Ω which means that the resulting TP model is

only explicable in Ω [33]. To apply TP transformation on LPV model, an N -dimensional

closed hypercube Ω is generated using HSS method. Each generated sample is confined to

be in the following constraint

an ≤ gn,mn ≤ bn, n = 1, . . . , N, mn = 1, . . . ,Mn (4.9)

where, N is the total number of the time varying parameters in the image Jacobian matrix

or the dimension of Ω, which is equal to 3. Mn is the number of samples on nth dimension.

Also, an, and bn are the minimum and maximum of the closed hypercube elements on each
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dimension, respectively, and are given as follows

a1 = xm, a2 = ym, a3 = Zm,

b1 = xM , b2 = yM , b3 = ZM .

Then the discretization of LPV model, Bd(q(t)), is obtained by sampling over the grid

points in Ω as follows

Lm1,m2,m3 = Ls(gm1,m2,m3), (4.10)

where Lm1,m2,m3 is the element of the tensor LD (superscript “D” denotes “discretized”) with

the size equal M1×M2×M3×2×6, that is, M1×M2×M3 different image Jacobian matrices

are obtained within the domain of Ω, and each of which represents an image Jacobian matrix

at a specific time. Because at each sampling time, the system has different values of x, y,

and Z, but they belong to transformation space Ω.

By applying HOSVD, the corresponding image Jacobian matrix becomes

LD =

M1∑
m1=1

M2∑
m2=2

M3∑
m3=1

3∏
n=1

wn,mn(qn)Lm1,m2,m3 , (4.11)

where, wn,mn(qn) is the weighting function value evaluated at the discretized values of

pn = gn,mn over the n-dimension interval [an, bn]. Based on (4.11), the (N + 2)-dimensional

coefficient tensor LD ∈ <M1×M2×M3×2×6 is constructed from linear time invariant (LTI) vertex

systems Lm1,m2,m3 ∈ <2×6.

In order to have convex TP model, the weighting function for all p ∈ Ω should satisfy

the following conditions

∀n, m, qn wn,m(qn) ≥ 0, (4.12)

∀n, qn
Mn∑
mn=1

wn,m(qn) = 1. (4.13)

The conditions (4.12) and (4.13) imply that the TP model type is Non-Negativeness (NN)

and Sum-Normalization (SN), respectively.

By discarding some nonzero singular values and using Reduced HOSVD technique, the

computational load of the control design will be reduced. The error between the exact tensor,

LD, and the reduced one, L̂D, can be approximated by (2.18). Then the extracted reduced

TP model can be used to design the MPC.
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4.3 Controller Design

To design the MPC, the discrete time model is used instead of the continuous time dynamic

model given in (4.1). The discrete time state-space model of each feature point can be

expressed as

sm(t+ 1) = Ism(t) + LVc(t), (4.14)

where, sm = [xm, ym]T is the projected position of each feature point on the camera frame.

Also, L = hLs(t) is the discrete time image Jacobian matrix, and h is the sampling time.

In (4.14), I is 2 × 2 identity matrix which is fixed, and only matrix L is the function of

time-varying parameters.

It is well known that a unique camera pose can theoretically be obtained by using at

least four image points; hence, m = 1, . . . , 4.

To design MPC, the image features error at sample time k is defined as e(k) = s(k)−sd,

in which s = [s1, s2, s3, s4]T . Also, sd is the desired feature vector acquired from the image

of the stationary object taken in the robot target pose.

The underlying goal of designing RMPC is to find a control law for the system input,

Vc, so that each image features error, e(k) defined at sampling time k can be steered to zero

within a desirable time period.

The control signal is defined as linear state feedback Vc,k = Fkek that minimize an upper

bound of the worst-case finite horizon quadratic cost at sampling time k

minimize
u

max
Z∈Z

N−1∑
i=0

eTk+i|kQek+i|k + VT
c,k+i|kRVc,k+i|k, (4.15)

where, Q � 0 and R � 0 are weighting matrices which let the designer make a trade-

off between small control signal (big value of R) and fast response (big value of Q). The

Lyapunov function V (e) = eTkPkek with Pk � 0 defined at sampling time k is an upper

bound on the worst-case cost if it holds for all vertices that satisfy the following inequality

[11]

eTk+1|kPkek+1|k − eTk|kPkek|k ≤ −eTk|kQek|k −VT
c,k|kRVc,k|k. (4.16)

It can be seen that by summing up the left–hand and right–hand side of the above

inequality from 0 to ∞, and inserting a linear feedback uk = Fkek, a matrix inequality can
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be obtained as follows

(I + LkF )TPk(I + LkF )− Pk � −Q− F T
k RFk, (4.17)

where, Lk is the discrete time Jacobian matrix at sampling time k. According to Boyd et al.

[16], by applying a congruence transformation Pk = X−1
k , defining Yk = FkXk, and an LMI

in terms of Xk and Yk can be found using a Schur complement as follows
Xk ∗ ∗ ∗

Xk + LkYk Xk ∗ ∗
Xk 0 Q−1 ∗
Yk 0 0 R−1

 � 0, (4.18)

where, the symbol ∗ represents a symmetric structure in LMIs. This LMI is only valid for

one model, but for this system which is a TP model, LMI should hold for all possible model

or vertices.

In order to solve the LMI in real-time and consider all of the possible vertices, the control

signal at time k is defined as uk+i|k = Fkek+i|k used for the future as well. The control signal

is obtained by minimizing the upper bound on the worst–case value of the quadratic objective

function considered as γk = eTk|kPkek|k, where Xk = γkPk � 0 and Yk are obtained from the

solution of the following semi-definite program [51]

minimize
γk,Xk,Yk

γk (4.19)

subject to
Xk ∗ ∗ ∗

Xk + Lj
dYk Xk ∗ ∗

Xk 0 γkQ−1 ∗
Yk 0 0 γkR−1

 � 0, (4.20)

(
1 xTk|k
xk|k Xk

)
� 0, (4.21)

where, j = 1, 2, . . . , L (L is the number vertices). Also, constraints on input and output,
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to ensure that the constraints are satisfied, can be defined as follows [81](
v2
maxI Yk

Y T
k Xk

)
� 0, (4.22)

(
y2
maxI Xk + Lj

dYk

(Xk + Lj
dYk)

T Xk

)
� 0, (4.23)

where, vmax, and ymax are the upper bound for input and output, respectively.

Under the above designed closed-loop feedback law, the solution for the optimization in

(4.19) can be obtained using the LMI technique, which results in stabilizing the LPV system

and steering the state variables to zero. At each sampling time, an optimal upper bound on

the worst-case performance cost over the infinite horizon is obtained by forcing a quadratic

function of the state to decrease by at least the amount of the worst case performance cost

at each prediction time. Such on-line step–by-step optimization can lead to asymptotically

stable evolution.

Here, YALMIP toolbox, which is used for modeling and solving the convex and nonconvex

optimization problems [24], is utilized to implement model predictive controller. This toolbox

helps to accomplish the on-line optimization and obtain the control signal at each sampling

time.

4.4 Experimental Results

In this section, the proposed controller is tested on a 6 DOF Denso robot [82]. The experi-

mental setup consists of a VS-6556G Denso robot and a camera mounted on the end-effectors

(Figure 4.2).

The robot communicates with its controller with a frequency of 1 kHz. A CCD camera

is used as the vision system, and is mounted on the robot’s end-effector. The camera char-

acteristics is given in Table 4.1. The program has been run using MATLAB 2014b/Simulink

Real-Time Workshop on PC Intel (R) Core (TM) i7-4770 CPU 3.4 GHz in Microsoft Win-

dows 7 operating system.

The camera capturing rate is 30 frames per second. The object is stationary in the work-

ing space. The visual servoing task is completed when the image features match the desired

features. In this work, four different tests with different strategies have been performed to
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(a) (b)

Figure 4.2: Experimental Setup.

Table 4.1: Camera Parameters

Parameters Values
Focal length 0.004 (m)

X axis scaling factor 110000 (pixel/m)
Y axis scaling factor 110000 (pixel/m)

Image plane offset of X axis 120 (pixel)
Image plane offset of Y axis 187 (pixel)

validate the algorithms.

4.4.1 TP Model Transformation

The hyper-rectangular N-dimensional space grid is generated, then the TP model trans-

formation is used to find the discretization model. 100 samples are considered on each

dimension for discretization. Therefore, a 100× 100× 100× 2× 6 tensor of the system is ob-

tained. The value of the parameters in Ω are considered as xm = −0.4m, xM = 0.4m, ym =

−0.4m, yM = 0.4m, Zm = 0.2m, and ZM = 0.6m. After applying HOSVD on each 3–

dimension of the system tensor, the nonzero singular values in each dimension are obtained
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as follows
σ

(1)
1 = 51.15 σ

(2)
1 = 51.15 σ

(3)
1 = 53.02

σ
(1)
2 = 7.23 σ

(2)
2 = 7.23 σ

(3)
2 = 4.00

σ
(1)
3 = 0.13 σ

(2)
3 = 0.13

In this case the small singular values which are possible to discard them are σ
(1)
3 , and

σ
(2)
3 . So, two first singular values of the first and second dimensions and all the nonzero

singular values of the third dimension are kept, and the error between the full rank of tensor

LD with 18 LTI models and the reduced one, L̂D with 8 LTI models can be approximated

by

‖LD − L̂D‖2 ≤ (σ
(1)
3 )2 + (σ

(2)
3 )2 ≈ 0.034. (4.24)

Therefore, the results show that the system in (4.14) can be approximately given in the

HOSVD-based canonical polytopic model form with minimum 2 × 2 × 2 = 8 linear time

invariant (LTI) vertex models. In order to have the convex TP model which can satisfy

LMI control design conditions, the sum normalization (SN) and non-negativeness (NN) type

weighting functions are used [33]. The weighting functions for exact tensor and reduced one

are illustrated in Figure 4.3.

The LTI system matrices of the polytopic TP model are

L1,1,1 =

(
0.08 0 0.03 0.01 0.59 −0.01

0 0.08 0.03 −0.59 −0.01 0.01

)
,

L1,1,2 =

(
−0.13 0 −0.05 0.01 0.59 −0.01

0 −0.13 −0.05 −0.59 −0.01 0.01

)
,

L1,2,1 =

(
0.08 0 0.03 −0.04 0.59 0.09

0 0.08 −0.20 0.40 0.04 0.01

)
,

L1,2,2 =

(
−0.13 0 −0.05 −0.04 0.59 0.09

0 −0.13 0.33 0.40 0.04 0.01

)
,

L2,1,1 =

(
0.08 0 −0.20 −0.04 −0.40 −0.01

0 0.08 0.03 −0.59 0.04 −0.09

)
,

L2,1,2 =

(
−0.13 0 0.33 −0.04 −0.40 −0.01

0 −0.13 −0.05 −0.59 0.04 −0.09

)
,
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(a) (b) (c)

(d) (e) (f)

Figure 4.3: SNNN type weighting functions of (a-c) the exact TP model of 18 LTI systems, and
(d-f) the reduced TP model of 8 LTI systems.
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L2,2,1 =

(
0.08 0 −0.20 0.24 −0.40 0.09

0 0.08 −0.20 0.40 −0.24 −0.09

)
,

L2,2,2 =

(
−0.13 0 0.33 0.24 −0.40 0.09

0 −0.13 0.33 0.40 −0.24 −0.09

)
.

The image Jacobian matrix or interaction matrix, L, at each sampling time can be written

as follows

L(t) =
2∑
i=1

2∑
j=1

2∑
k=1

w1,i(x(t))w2,j(y(t))w3,k(Z(t))Ldi,j,k , (4.25)

where w1,i, i = 1, 2, w2,j, j = 1, 2 and w3,k, k = 1, 2 are weighting functions which are

shown in Figures 4.3d–4.3f.

The interaction matrix (4.25) varies in a polytope Ω (Convex Hull) of vertices which

satisfies convexity conditions given in Equations (4.12), and (4.13).

4.4.2 Results and Analysis

The maximum control input of camera velocity screw in Equation (4.22), vmax, is limited to

0.25m/s for the translational speed and 0.25 rad/s for the rotational speed.

Using the proposed method and YALMIP toolbox, the experiments are performed in

real-time and the computational time of the optimization problem is less than the sampling

time (0.04 sec). There is scant research on developing real-time MPC technique for IBVS

control. For example, both [75] and [83] only have presented the simulation results. However,

in this work, all experiments have carried out in real-time.

The bigger elements of the matrix Q are chosen in comparison with the ones of the matrix

R to have the fast convergence response

Q = 10× I8×8, R = I6×6, (4.26)

where In×n is the identity matrix. The experimental results of the four different cases are

given in the following.

Test 1:

In the first test the initial and desired features are chosen in a way that a 90 degrees rotation

about the camera’s center is required to complete the task. The initial and desired locations
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Table 4.2: Initial (I) and Desired (D) locations of feature points in pixel

Point1 Point2 Point3 Point4
(x y) (x y) (x y) (x y)

Test 1
I 121 100 161 101 160 138 120 137
D 152 159 152 119 188 121 187 160

Test 2
I 279 153 308 179 282 207 254 179
D 37 63 77 52 87 88 47 99

Test 3
I 36 176 71 176 69 210 32 209
D 260 207 278 179 307 197 288 226

Test 4
I 152 36 230 84 177 162 105 111
D 119 110 162 110 161 150 117 150

of the features are given in Table 4.2. The results of this test are given in Figure 4.4.

Figure 4.4a shows the trajectory of the features in image plane. The trajectory starts

from the initial position indicated as the triangle sign and ends at the positions indicated as

the circle sign. This figure shows how the controller takes the features to their desired value

without any unnecessary motions. A similar test was performed in [60]. The comparison

between two results shows that considering the constraints in the controller could improve

the trajectory of the features in image plane. The joint angles’ changes during the visual

servoing task are shown in Figure 4.4c. Finally, the 3D trajectory of the robot end-effector

in space is shown in Figure 4.4b.

Test 2:

In the second test, a long distance visual servoing task is performed. The initial and the

desired locations of the features are located in relatively far distance from each other as

shown in Table 4.2. The results of this test are given in Figure 4.5.

One of the drawbacks of the IBVS controller is that it can not keep the end effector

inside the workspace when a long distance task is required. The MPC controller could

provide better results for such tasks because of its prediction algorithm. Thus, the MPC

controller prevents reaching the limits of the space during the operation. The results of Test

2 show how the MPC controller succeeds in completing the task. The sequence of the result

figures is the same as the one in Test 1.
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(a) Feature trajectory in image plane (b) Camera 3D trajectory

(c) Robot joint angles

Figure 4.4: Results for Test 1.
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(a) Feature trajectory in image plane (b) Camera 3D trajectory

(c) Robot joint angles

Figure 4.5: Results for Test 2.
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Test 3:

In Test 3, another long distance task is tested where the features move close to the FOV

limit. The initial and desired locations of the features are given in Table 4.2. Performing

the same test using an IBVS controller causes the features to leave the field of view [60].

The IBVS controller rotates the features while taking the features to the desired position.

However, the proposed MPC controller avoids rotating the features in order to respect the

system constraints. The rotation of the features happens when the features are close to the

desired features. The results of this test are given in Figure 4.6.

Test 4:

In Test 4, a visual servoing task is prepared which requires a complicated motion in 3D

space and involves all the 6 DOFs motions in space. The initial and desired locations of the

features are given in Table 4.2. The results for this test are given in Figure 4.7. The results

show how the proposed MPC controller manages to reach the desired target while keeping

the image features and the robot within limits.

According to the obtained results, it is obvious that for different tests, the camera has

different translational movement in Z direction from initial pose to the desired or final

pose. Figure 4.7b shows that camera moves from Z = 0.25m to Z = 0.4m which is a

long vertical translation. In most of the researches such as [60], for simplification purpose, a

constant depth value is considered as the depth of the object with respect to the camera. This

assumption can affect the performance of the controller unless the controller is designed with

the robustness against the uncertainty. Therefore, by using robust optimization method in

which Z is considered as an uncertain bounded variable, the robust MPC can be designed.

The robust MPC can deal with the time varying depth of object. The results of Test 4

demonstrate that it is far better to consider the variable depth instead of the fixed one.

4.5 Conclusion

In this chapter a real-time MPC-based IBVS controller is developed based on the discretized

model of image Jacobian matrix. The control signal is obtained by minimizing the cost

function based on the error in image plane and provides the stability and convergence of

the robot motion. The constraints due to actuator limitations and visibility constraints can
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(a) Feature trajectory in image plane (b) Camera 3D trajectory

(c) Robot joint angles

Figure 4.6: Results for Test 3.
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(a) Feature trajectory in image plane (b) Camera 3D trajectory

(c) Robot joint angles

Figure 4.7: Results for Test 4.
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be taken into account using model predictive control strategy. The experimental results

on a 6-DOF eye-in-hand visual servoing system have demonstrated the effectiveness of the

proposed method. The experiments have been carried out in a true real–time fashion. The

ability of MPC to keep the system within the desired limits increase the success chance of

visual servoing tasks compared to basic visual servoing controllers.
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Chapter 5

Multi-Objective Model Predictive

Control

In the standard MPC formulations, there is a single objective function which normally is

the summation of weighted quadratic functions. Although several control specifications

which are often irreconcilable can be considered in the single objective function, choosing

the appropriate weighting functions are another challenge faced by control designers. This

chapter proposes a novel MPC scheme based on multi-objective optimization. At each

sampling time, the MPC control action is chosen among a set of optimal solutions based

on the Nash bargaining solution. The main contribution is to formulate the standard MPC

optimization problem as a multi-objective optimization problem. Furthermore, as the second

contribution, it is presented that the optimal performance of the proposed multi-objective

MPC scheme is close to the global optimal solution. The stability and controller design are

projected as LMIs. It is shown through the examples that the proposed method can execute

approvingly compared to other methods in the literature of the control systems.

5.1 Introduction

Multi-objective optimization design recently has attracted great attention of the researchers

in solving engineering problems that have conflicting objectives [84, 85]. For example, there

always exist more than one objective functions in practical control problem which should

be optimized simultaneously (e.g., rise time, overshoot, control efforts, . . . ) [84]. The con-

trol design objectives are normally in conflict with each other. Since the conflicts exist
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among the objective functions, and in order to find the trade-offs between the objectives,

the controller design can be formulated as a multi-objective optimization problem (MOP)

[25, 84, 86]. Hence, a control system design which is associated with multiple and often

conflicting performance criteria can be defined as multi-objective control problems [87, 88].

In most of the optimal control system design, such as MPC design, a cost function

consists of the weighted quadratic sum of those non-commensurable objectives. Choosing

the appropriate weighting factors is inherently difficult and could be regarded as a subjective

design parameter [84, 89]. Furthermore, the possible existing trade-off between the objective

functions cannot be explored; therefore, it is not possible to find an optimum design point

which can reflect the compromise of the designer’s choice. Consequently, it is far better to

formulate the multi-objective control problems as MOP.

The multi-objective controller design problem can be solved by LMI formulation effi-

ciently, especially, when the objective being traded off are in the 2-norm forms (convex)

[25]. Still, there is scant research on developing MPC scheme based on multi-objective op-

timization [90–92]. The problem of this approach is that in MPC design at each sampling

time only one optimal solution is needed. However, in multi-objective optimization, a set

of non-dominated solutions are obtained which is called Pareto Frontier [93]. Furthermore,

the computational time required to solve the optimization problem for MPC with single

objective is usually large, let alone multiple objectives. For example, Garcia et al. [92] used

genetic algorithm to solve the optimization problem at each sampling time. But genetic al-

gorithm needs a large computational time. In order to confine the optimization time within

the sampling time, they reduced the initial population size and the number of generations.

Therefore, finding the global minimum solution is not possible, and the proposed method is

a kind of suboptimal strategy. Then, a fuzzy inference system was used to select intelligently

a trade-off point among Pareto fronts. Indeed, this is an additional design objective, because

different fuzzy system should be designed for different problems in advance.

In [90], authors used convex optimization techniques to design multi-objective MPC for

linear systems. They used the convex combination of the objective functions to generate

Pareto front points. They used a pre-defined target weight vector to find the convex com-

bination of the objective functions. In order to choose the element of this vector which are

the function of system states, the control designer must be familiar with the system phys-

ical limitation, also, the working properties of the system. Otherwise, it is really hard to

choose an appropriate function for the target weight vector. Therefore, appropriate selection

73



method which is a general and an automatic one, regardless of the system physical property,

has not been provided in literatures yet.

In this chapter, a novel MPC scheme based on the multi-objective optimization is pro-

posed in which at each sampling time, the MPC control action is chosen automatically among

the set of Pareto optimal solutions based on the Nash Bargaining Solution from Game The-

ory [26]. This method is independent of the system type. It is applied on the nonlinear

systems along with TP transformation to design multi-objective MPC. As a result, LMIs

and convex optimization techniques can be utilized to provide an on-line solution for the

multi-objective MPC design. Finally, the proposed method is executed on a complex non-

linear system and the obtained results are compared with the proposed method presented in

[21].

The rest of this chapter is organized as follows. Section 5.2 is dedicated to preliminary

notions of multi-objective optimization. The problem statement is presented in 5.3. In

Section 5.4, the proposed method and control design procedure are introduced. Numeri-

cal examples and simulation results are presented in Sections 5.5 and 5.6, followed by the

concluding remark in Section 5.7.6

5.2 Multi-Objective Optimization

Multi-objective optimization also called multi-criteria optimization or vector optimization is

defined as finding of the decision variables vector satisfying constraints to give optimal values

to all objective functions [84]. Without loss of generality, assume all objective functions must

be minimized, then a MOP can be defined as follows

minimize
ν

J(ν) = [J1(ν), J2(ν), . . . , Jl(ν)] (5.1a)

subject to

Gi(ν) ≤ 0, i = 1, . . . , m, (5.1b)

Hj(ν) = 0, i = 1, . . . , p, (5.1c)

where, ν ∈ Rn is the decision vector or design variables, J(ν) ∈ Rl is the objective functions

vector. Also, the solution of the optimization in (5.1a), ν∗, must satisfy both inequality

constraints in (5.1b) and equality constraints in (5.1c).

74



The followings are some definition of multi-objective minimization based on the Pareto

approach [94].

Definition 5.2.1 (Pareto Dominance)
A vector J̄ ∈ Rl dominates a vector J ∈ Rl if and only if the set of inequalities

J̄i ≤ Ji, i = 1, . . . , l,

and at least one of the inequalities is strict, that is, ∃j ∈ 1, 2, . . . , l : J̄j < Jj.

Definition 5.2.2 (Pareto Optimality)
A vector ν∗ is said to be a Pareto Optimal (minimal) if and only if Ji(ν

∗) < Ji(ν),∀i. In

other words, no other solution can be found to dominate ν∗ based on the Pareto dominance

definition.

Definition 5.2.3 (Pareto Set)
Pareto set P is a set of decision variables including all of the possible Pareto optimal vectors.

It means that any point in Pareto set dominates all of the points out of this set.

Definition 5.2.4 (Pareto Front)
Pareto front Pf is a set of objective functions vector obtained by the design variables vectors

in the Pareto set P .

In a Pareto front, typically there are always more than one solutions. Any solution in

Pareto front is called non-dominated solution, because it is never dominated by another

solution in Pareto front.

As in many practical optimization problems (MPC design), only one solution (one control

action at each sampling time) among the Pareto set should be selected as the final solution,

it is crucial to find a practical and generalized method to choose a trade-off point among

Pareto front. As mentioned before, the proposed methods in [90] and [92] are not the

general methods, because the designers must choose different criteria for different systems.

Nevertheless, in this thesis, a method will be proposed for any kind of system without any

limitation.

To begin with, some properties of the Pareto front will be given as follows. First of all,

Pareto front is a convex set, that is, suppose αi ∈ (0, 1), with
l∑

i=1

αi = 1,

ν̂ ∈ arg min
ν∈P

l∑
i=1

αiJi(ν),

75



Figure 5.1: The Nash bargaining solution.

then ν̂ is Pareto optimally [26].

In addition, if Pf is convex and Ji, ∀i is convex, for all Pareto optimal ν∗ ∈ P there exist

α ∈ A, such that

ν∗ ∈ arg min
ν∈P

l∑
i=1

αiJi(ν),

where A := {α = (α1, α2, . . . , αl)|αi ≥ 0 and
l∑

i=1

αi = 1}. It simply means that a vector α

can be found which gives a convex combination of the Pareto front and the result is still a

point of the Pareto front.

Therefore, it is necessary to find an appropriate vector α which yields in selecting a trade-

off point. This led us to the most influential concept in game theory, the Nash equilibrium.

One of the useful methods to find the trade-off point is based on the Bargaining concept

which has its origin in two papers by Nash [26].

The Nash Equilibrium point, or Nash Bargaining Solution is the point of the Pareto front

set, Pf , at which the product of utility gains from Threat point is maximal [95]. Threat

or disagreement point is a point in which the objectives can expect to receive other better

results than the one which becomes effective when they do not cooperate or negotiations

break down. Consider an optimization problem with two objective functions, J = [J1, J2]. If

ν1 is the solution of the single objective optimization, without J2, likewise, ν2 is the solution

when J1 is not considered; then, d = (d1, d2) is a disagreement point in which d1 = J1(ν2)

and d2 = J2(ν1).
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According to the Nash bargaining solution, the trade-off point is

N(Pf , d) = arg max
J∈Pf

l∏
i=1

(Ji − di), for J ∈ Pf with J � d, (5.2)

where Ji is the objective function, J � d means J dominates d, and l is the objective func-

tions number. Based on the assumption that all cost functions Ji are convex, every optimal

solution which results in Pareto front can be obtained by minimizing a linear combination

of these cost functions [26]. Therefore, if the set of all cooperative Pareto solutions is given

by

[(J1(ν∗(α)), . . . , Jl(ν
∗(α))] , (5.3)

the corresponding Pareto optimal solution is obtained as [26]

ν∗(α) = arg min
ν∈ν̄

l∑
i=1

αiJi. (5.4)

Figure 5.1 illustrates the concept of Nash bargaining solution geometrically. The Nash

bargaining solution is the point on the edge of Pf and a part of the Pareto frontier which

yields the largest rectangle (N, A, B, d) [26]. This point can be obtained by a few Pareto

points [96]; therefore, this method can be beneficial to MPC design. The methodology of

the controller design using Nash Bargaining Solution is given in the following sections.

5.3 Problem Statement

Consider the following discrete-time LPV system of the form

xk+1 = A(pk)xk +B(pk)uk, (5.5)

yk = C(pk)xk +D(pk)uk, (5.6)

where xk ∈ Rn is the state vector, uk ∈ Rm is the control input, and yk ∈ <p is the measured

output. Also, the input and output are subjected to the following constraints

−umax ≤ uk ≤ umax (5.7)
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−ymax ≤ yk ≤ ymax (5.8)

The time-varying system matrix is defined as follows

S(pk) =

(
A(pk) B(pk)

C(pk) D(pk)

)
∈ R(n+p)×(n+m), (5.9)

as described in Chapter 2, this matrix belong to the convex hall given in (2.5), including the

convex combination of (L) LTI models.

Using the LPV model, the control signal is derived by minimizing an upper bound of the

worst-case infinite horizon quadratic cost at sampling time k

Jk = max
p∈Ω

∞∑
i=0

xTk+i|kQxk+i|k + uTk+i|kRuk+i|k, (5.10)

where Q � 0 and R � 0 are weighting matrices which should be designed by the designer

to make a trade-off between the response performance, and control input cost. Therefore,

the performance of the control system depends on these matrices. In the following sections,

a method will be proposed in which the designer does not need to specify these matrices.

5.4 Multi-Objective MPC Design

As mentioned before, the goal of this chapter is to find a method which helps the designer to

solve the multi-objective MPC problems without choosing the weighting matrices. In order

to obtain the control signal at each sampling time, using the method described in Section

4.3, the following optimization problem should be solved at each sampling time

minimize
γk,Xk,Yk

γk (5.11a)

subject to
Xk ∗ ∗ ∗

AjXk +BjYk Xk ∗ ∗
Xk 0 γkQ

−1 ∗
Yk 0 0 γkR

−1

 � 0, (5.11b)
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[
1 xTk|k
xk|k Xk

]
� 0, (5.11c)

[
u2
maxI Yk

Y T
k Xk

]
� 0, (5.11d)

[
y2
maxI Ck(AjXk +BjYk)

(AjXk +BjYk)
TCT

k Xk

]
� 0, (5.11e)

where, j = 1, 2, . . . , L (L is the number vertices). And, umax, and ymax are the upper

bound for input and output, respectively.

The LMI control design method in (5.11) can be extended to the multi-objective opti-

mization problem. Since, the performance of the control system depends on the weighting

matrices, the following method is proposed to tune these matrices based on the Nash bar-

gaining solution at each sampling time.

According to the Pareto front properties, since the objective functions in (5.10) are

convex, the cost function J can be defined as a linear combination of those convex objective

functions by specifying the weighting matrices, Q and R as follows

Q = diag(α̂), α̂ = [α1, α2, . . . , αn] , (5.12)

R = diag(ᾱ), ᾱ = [αn+1, αn+2, . . . , αn+m] (5.13)

where diag means the diagonal matrix and α = [α̂, ᾱ] ∈ A is the tuning parameter vector

obtained by Nash bargaining solution at each sampling time. Therefore, the designer does not

need to design the weighting matrices, since they are automatically tuned at each sampling

time.

In order to find the Nash equilibrium point, first of all, the threat or disagreement point

must be found. The threat point can be obtained by solving the optimization problem at

k = 0 for αs = 1, and αi = 0, i 6= s, that is, the optimization problem is solved for each

objective function separately. Then n different points will be obtained. Each of which has

the best value for the corresponding objective function and they may have the worse value

for other objective functions. Finally, one single point among them is obtained, which is

dominated by other points, and it is considered as a threat or disagreement point. Now, the

multi-objective MPC can be designed using Nash equilibrium point.

The design steps of the multi-objective MPC are given as follows;
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Step 1: at k = 0

1. for i = 1 to l

2. α← [0, 0, . . . , 0]

3. αi = 1;

4. find νi = arg min
ν
Ji

5. end

Step 2: find threat point d

6. for i = 1 to l

7. di ← max(Ji(ν1), Ji(ν2), . . . , Ji(νl))

8. end

Step 3: for k = 1 to End do

9. set: α0 ← [1
l
, . . . , 1

l
]

10. compute: ν∗ = arg min
ν∈ν̄

l∑
i=1

α0
iJi(ν)

11. for i = 1 to l verify

12. if Ji(ν
∗ ≤ di)

13. calculate: α̃Nj =

∏
i6=j

(di−Ji(ν∗(α0)))

l∑
i=1

∏
h6=i

(dh−Jh(ν∗(α0)))

, j = 1, . . . , l

14. else find i0 which Ji0(ν
∗) > di0

15. update: α0
i0

:= α0
i0

+ 0.01, α0
i := α0

i − 0.01
l−1

, i 6= i0

16. return to 10

17. end

18. if |α̃Nj − α0
i | < 0.01, i = 1, . . . , l
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19. terminate

20. set: αNj = α̃Nj

21. k ← k + 1

22. else α0
i := 0.8α0

i + 0.2α̃Ni

23. return to 10

24. end

It should be noted, the numbers 0.01 and 0.8 in the above-mentioned design procedure

are chosen arbitrary [26].

5.5 Mass and Spring System

To illustrate the effectiveness of the proposed MPC method, the system consisting of a two-

mass-spring model with a time-varying nonlinear spring coefficient, as in [43], [44] and [97],

is considered and shown in Figure 5.2.

Figure 5.2: Two-mass-spring system.

5.5.1 Problem Formulation

The discrete-time state-space model of the two-mass-spring system (obtained from the con-

tinuous time model using a first-order Euler approximation with sampling time h = 0.1 s) is
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given as follows [44]

xk+1 =


1 0 0.1 0

0 1 0 0.1

−0.1 µ
m1

0.1 µ
m1

1 0

0.1 µ
m2

−0.1 µ
m2

0 1

xk +


0

0
0.1
m1

0

uk, (5.14)

where m1 and m2 are two masses and µ is the spring constant [97]. The state vector at each

sampling time, xk, includes the position of the masses x1,k, x2,k and their velocities, x3,k,

x4,k. In this example the masses are constant m1 = 1 and m2 = 1, while spring constant

varies with time according to the following equation

µk = 5.25− 4.75 sin(0.5k). (5.15)

It can be seen that µk ∈ [0.5, 10]. According to [97], the weighting functions wk can be

defined as w1,k = 1− µk−0.5
9.5

and w2,k = 1−w1,k which satisfy convex hull condition in (2.5).

For this system, two vertices based on the maximum and minimum values of the spring

constant can be obtained as follows

A1 =


1 0 0.1 0

0 1 0 0.1

−0.05 0.05 1 0

0.05 −0.05 0 1

 , (5.16)

A2 =


1 0 0.1 0

0 1 0 0.1

−1 1 1 0

1 −1 0 1

 , (5.17)

B1 = B2 =


0

0

0.1

0

 . (5.18)

The objective of the control design is to steer the two masses from the initial condi-

tion x0 = [1, 1, 0, 0]T to the origin. The control system must satisfy the input and output
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(positions of the masses) constraints, ‖uk‖ ≤ 0.05 and ‖yk‖ ≤ 1, respectively. Since, the con-

straints are considered only for the positions, the matrix C = [1 0 0 0; 0 1 0 0] is independent

of wk and is kept the same for both vertices.

5.5.2 Simulation Results

Figure 5.3 illustrates the obtained simulation results. It is obvious that the system is asymp-

totically stable, and the states are steered to the origin efficiently. Figure 5.4 shows the

results from [43], [44], and [44]. It is noticed that the proposed MPC method steers the

masses to the origin significantly faster compared with the other methods. According to the

obtained results, the settling time is about 25 sec, while it is about 45 sec in [97].

The control signal of the proposed MPC method is shown in Figure 5.5a. Also, Figure

5.5b illustrates the control signal behavior of the methods in [43, 44, 97]. It can be seen that

both input and output responses satisfied the considered constraints. Although the results

show that the proposed MPC method has the greater control signal magnitude than the

other methods do, it does not violate the constraint; therefore, the results are acceptable. It

shows the advantage of the proposed method. At the beginning of the response, the state

error is large. Therefore, using the Nash bargaining solution, the bigger states weights are

chosen while the weight of the control input is small. This automatic tuning procedure is

carried out within the simulation at each sampling interval to find the variable weighting

matrices as Q = α1I4×4, and R = α2, ([α1, α2] ∈ A) . On the contrary, the other methods

use the fixed weighting matrices as Q = I4×4, and R = 1.

Figure 5.6 shows the minimized upper bound on the worst-case cost function in (5.11a).

It clearly shows that the proposed method obtains incomparably smaller upper bound at

each sampling time (Figure 5.6a) in comparison with the other methods (Figure 5.6b). As

a result, the proposed controller is closer to the optimal solution that may be obtained for

the unconstrained optimal control method (global minimal solution).

It is evident that applying the proposed MPC method [98] on the considered LPV model

achieve significant performance improvements compared with the methods presented in [43],

[44], [97].

To generalize the application of the proposed method, in the following section a highly

nonlinear system is considered and the proposed method is applied to that. Finally, the

obtained results are compared with proposed method in [33].
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(a) Mass 1 Position (m) (b) Mass 2 Position (m)

(c) Mass 1 Velocity (m/s) (d) Mass 2 Velocity (m/s)

Figure 5.3: Time response of the state variables.
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(a) Mass 1 Position (m) (b) Mass 2 Position (m)

(c) Mass 1 Velocity (m/s) (d) Mass 2 Velocity (m/s)

Figure 5.4: The state responses of the results from [43] (dashed line), [44] (gray line), and [97]
(solid black line)
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(a) (b)

Figure 5.5: Control signal of (a) the proposed method, (b) [43] (dashed line), [44] (gray line), and
[97] (solid black line).

(a) (b)

Figure 5.6: Upper bound on the considered cost functions, γ (a) the proposed method, (b) [43]
(dashed line), [44] (gray line), and [97] (solid black line).
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5.6 TORA System

In this section, the novel multi-objective model predictive control is executed on a nonlinear

system. Also, the results will be compared with the results of the proposed method by

Baranyi et al. in [33]. The disturbance rejection is also investigated as a robustness criteria

for the proposed method.

5.6.1 Problem Formulation

Figure 5.7 illustrates a Translational Oscillator with an eccentric Rotational proof-mass Ac-

tuator (TORA) system which has been used in many research projects as a challenging

benchmark for control designers [99–102]. The oscillator consists of a cart of mass M con-

nected to a fixed wall by a linear spring of stiffness k. It can be seen that the cart is confined

to have one-dimensional motion in the horizontal plane. As the motion is on the horizontal

plane, the gravitational forces have no effect on motion. The proof-mass actuator is attached

to the cart which has mass m and moment of inertia I about its center of mass. The mass is

located a distance e from the rotational point. The control torque denoted by N is applied

to the proof-mass [103, 104].

Figure 5.7: TORA system.

In order to derive the equations of motion, the followings are considered; the cases θ = 0◦

where the mass motion is perpendicular to the cart motion, and θ = 90◦ where the mass

motion is in the direction of cart motion which is illustrated by q in Figure 5.7. The equations
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of motion are adopted from [104] which are given as follows

(M +m)q̈ + kq = −me
(
θ̈ cos θ − θ̇2 sin θ

)
, (5.19)(

I +me2
)
θ̈ = −meq̈ cos θ +N, (5.20)

with the normalization

ξ '
√
M +m

I +me2
q, (5.21)

τ '
√

k

M +m
t, (5.22)

u ' M +m

k (I +me2)
N. (5.23)

The equations of motion become

ξ̈ + ξ = ε
(
θ̇2 sin θ − θ̈ cos θ

)
, (5.24)

θ̈ = −εξ̈ cos θ + u, (5.25)

where ξ is the normalized cart position, and u is the non-dimension control torque, τ is the

normalized time on which the differentiation is based. The coupling between the rotational

and the translational motions, ε, is defined by

ε =
me√

(I +me2) (M +m)
. (5.26)

Let x(t) = [x1, x2, x3, x4]T =
[
ξ, ξ̇, θ, θ̇

]T
. The state-space model of the non-dimensional

equations of motion can be written as

ẋ(τ) = f(x(τ)) + g(x(τ))u(t), (5.27a)

y(τ) = h(x(τ)), (5.27b)
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where

f(x) =


x2

−x1+εx24 sinx3
1−ε2 cos2 x3

x4

ε cosx3(x1−εx24 sinx3)
1−ε2 cos2 x3

 , (5.28a)

g(x) =


0

−ε cosx3
1−ε2 cos2 x3

0
1

1−ε2 cos2 x3

 , (5.28b)

h(x) =

(
x1 0 0 0

0 0 x3 0

)
. (5.28c)

Now, the LPV state-pace model of the nonlinear system can be written as

ẋ(t) = S(p(t))

(
x(t)

u(t)

)
, y(t) = Cx(t), (5.29)

where system matrix S(p(t)) includes

S(p(t)) =
(
A(p(t)) B(p(t))

)
, (5.30)

and the vector of varying parameters is p(t) = [x3(t) x4(t)] ∈ Ω; therefore, one has

A =


0 1 0 0
−1

1−ε2 cos2 x3
0 0 εx4 sinx3

1−ε2 cos2 x3

0 0 0 1
ε cosx3

1−ε2 cos2 x3
0 0 −ε2x4 cosx3 sinx3

1−ε2 cos2 x3


B = g(x(t)), C =

(
1 0 0 0

0 0 1 0

)
.

(5.31)

The parameters of the laboratory-scale model of this benchmark problem described in

[104] are given in Table 5.1. The constraints of the system are considered as

|q| ≤ 0.025m, (5.32a)
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Table 5.1: Parameters of the TORA system

Description Parameter Value Units
Cart mass M 1.3608 kg
Arm mass m 0.096 kg
Arm eccentricity e 0.0592 m
Arm inertias I 0.0002175 kg.m2

Spring stiffness k 186.3 N/m
Coupling parameter ε 0.2 –

|N | ≤ 0.1Nm. (5.32b)

In order to find the TP model transformation of the nonlinear model, the constraints

defined in (5.32) must be considered. Also, θ is considered to be smaller than 0.85 rad and θ̇

is not larger than 0.5 rad/sec [104]. Therefore, the varying parameters space can be defined

as x3(t) ∈ [−0.85, 0.85] and x4(t) ∈ [−0.5, 0.5].

Using the method described in Chapter 2, to find the discretization model, the hyper-

rectangular N-dimensional space grid is generated and the TP model transformation is used.

100 samples are considered on each dimension for discretization. Therefore, a 100 × 100 ×
100× 2× 5 tensor of the system is obtained. The nonzero singular values are obtained as

σ
(1)
1 = 205.056, σ

(2)
1 = 205.076,

σ
(1)
2 = 2.846, σ

(2)
2 = 2.65,

σ
(1)
3 = 2.653,

σ
(1)
4 = 0.042,

σ
(1)
5 = 0.028.

Hence, the TORA system can be exactly given in the HOSVD-based polytopic model form

with minimum 5 × 2 = 10 LTI vertex models. To reduce the computational load of the

control design, a trade-off between complexity and accuracy is made. In this case the small

singular values which are possible to discard are σ
(1)
4 , and σ

(1)
5 . Hence, the reduced HOSVD-

based polytopic model is formed with 3× 2 = 6 LTI vertex model, which can be represented

as follows

ẋ(t) =
3∑
i=1

2∑
j=1

w1,i(x3(t))w2,j(x4(t))(Ai,jx(t) +Bi,ju(t)), (5.33)
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(a) (b)

Figure 5.8: SNNN type weighting functions of the reduced TP model form by 6 LTI vertices.

where wi,j(.) i = 1, 2 3, j = 1, 2 are the weighting functions depicted in Figure 5.8. Also,

the LTI system matrices of the polytopic model are

A1,1 =


0 1.000 0 0

−1.035 0 0 −0.185

0 0 0 1.000

0.247 0 0 0.005

 , B1,1 =


0

−0.247

0

1.035

 ,

A1,2 =


0 1.000 0 0

−1.035 0 0 0.185

0 0 0 1.000

0.247 0 0 −0.005

 , B1,2 =


0

−0.247

0

1.035

 ,
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A2,1 =


0 1.000 0 0

−1.061 0 0 0.108

0 0 0 1.000

0.118 0 0 −0.019

 , B2,1 =


0

−0.118

0

1.061

 ,

A2,2 =


0 1.000 0 0

−1.061 0 0 −0.108

0 0 0 1.000

0.118 0 0 0.019

 , B2,2 =


0

−0.118

0

1.061

 ,

A3,1 =


0 1.000 0 0

−1.017 0 0 −0.009

0 0 0 1.000

0.164 0 0 0.003

 , B3,1 =


0

−0.164

0

1.017

 ,

A3,2 =


0 1.000 0 0

−1.017 0 0 0.009

0 0 0 1.000

0.164 0 0 −0.003

 , B3,2 =


0

−0.164

0

1.017

 .

As mentioned before, in order to investigate the advantage of the proposed method over

other methods, the simulation results are compared with those of the proposed method in

[33, 105] (call it Baranyi Method). In [105], the authors used Parallel Distributed Com-

pensation (PDC) framework to design the state-feedback controller for LPV systems. The

PDC framework was proposed by Wang and Tanaka in 1995, [106]. First, it was developed

for Takagi-Sugeno (TS) fuzzy system, and recently a number of LMI design theorems have

developed for the PDC design framework [29]. In this method, the goal is to find a local

feedback controller for each LTI system such that the state feedback law stabilizes the local

system. Then the control signal is obtained as a convex combination of each local controller

using weighting functions.

The simulation and comparison results are presented in the next section.
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5.6.2 Simulation Results

In order to design the multi-objective MPC, the weighting matrices are chosen as follows

Q =


α1 0 0 0

0 α2 0 0

0 0 α3 0

0 0 0 α4

 , (5.34a)

R = α5, (5.34b)

where, αi > 0, i = 1, . . . , 5, and
5∑
i=1

αi = 1, which are tuned automatically at each sampling

time.

The control design objective is to steer the cart from the initial condition x0 = [0.025m, 0,

0, 0]T to the origin using proof-mass actuator.

The state responses are illustrated in Figures 5.9 and 5.10. It can be seen in Figure

5.9a the proposed controller acts faster than the Baranyi method. Based on the simulation

results, the system settling time with the proposed controller is 1.5 sec, while with the

Baranyi controller it is 2.5 sec.

Also, with the proposed MPC, less oscillation is obtained compared with the Baranyi

method. It can be seen in Figure 5.10a that the maximum proof-mass actuator angle for

the system with the proposed controller is 100 degree, but for the system with the Baranyi

controller is about 140 degree.

Consequently, the obtained control signal using the proposed method is smaller than

that is the Baranyi methods, which shows the efficiency of the proposed method. The faster

response with the smaller control signal is attained in comparison with the Baranyi method,

that is, the obtained MPC method is closer to the optimal solution that would be obtained

if the optimization problem could be solved analytically.

Figure 5.12 graphically illustrates the comparison results between the proposed method

and the Baranyi method. It clearly shows the supremacy of the proposed method over the

Baranyi method. Although the Baranyi method has the peak of the position with 10% less

than the proposed method, in terms of other criteria the proposed method shows 26%, 28%,

and 18% improvement in Angle Peak, Settling Time, and Power, respectively. It should be

mentioned that the power is measure by P = τ × ω.
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(a)

(b)

Figure 5.9: The cart (a) position, and (b) velocity responses.
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(a)

(b)

Figure 5.10: The proof-mass actuator (a) angle, and (b) angular velocity responses.
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Figure 5.11: The applied torque on the system.

The disturbance rejection performance is considered as a measure to analyze the robust-

ness of the proposed method, and to compare it with Baranyi method.

Assuming the applied disturbance as an external forces on the cart, the extended state-

space model can be written as [33]

ẋ(t) = f(x(t)) + g(x(t))u(t) +D(x(t))W(t), (5.35a)

y(t) = h(x(t)), (5.35b)

where

f(x) =


x2

−x1+εx24 sinx3
1−ε2 cos2 x3

x4

ε cosx3(x1−εx24 sinx3)
1−ε2 cos2 x3

 , (5.36a)
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Figure 5.12: The comparison results between the proposed method and the Baranyi method.

g(x) =


0

−ε cosx3
1−ε2 cos2 x3

0
1

1−ε2 cos2 x3

 , (5.36b)

D(x) =


0
1

1−ε2 cos2 x3

0

−ε cosx3
1−ε2 cos2 x3

 , (5.36c)

h(x) =

(
x1 0 0 0

0 0 x3 0

)
, (5.36d)

and W(t) is the disturbance.

In this simulation, W(t) = 0.5 sin(5t) is added to the system for 1 sec < t < 3.5 sec. The
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initial conditions are considered as x0 = [0.025m, 0, 0, 0]T . The states responses are shown

in Figures 5.13 and 5.14. It can be observed that the proposed MPC method can efficiently

reject the effect of the disturbance on the system. Also, by comparing the results illustrated

in 5.13 and 5.14, it can be concluded that the proposed method rejects the disturbance with

less oscillation than Baranyi method responses.

Furthermore, the behavior of the control signal in Figure 5.15 shows that the proposed

controller is able to react against the disturbance more efficiently compared with the Baranyi

method. It is evident that within the period of applying the disturbance, the control signal

obtained by Baranyi method is almost 10 times more than the proposed method. As the

control torque is applied on the proof-mass actuator, the bigger torque results in more

oscillation in the response, which is evident in Figure 5.14b.

To sum up, the application of the proposed MPC method on the highly nonlinear system

shows the satisfactory performance and robustness. Also, the improvement in terms of

performance and robustness are obvious compare with the controller approach in [33].
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(a)

(b)

Figure 5.13: The cart (a) position, and (b) velocity responses with the external disturbance.
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(a)

(b)

Figure 5.14: The proof-mass actuator (a) angle, and (b) angular velocity responses with the external
disturbance.
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Figure 5.15: The applied torque on the system in the presence of the disturbance

5.7 Conclusion

This chapter presents a novel methodology to solve the problem of multi-objective model

predictive control design. This method is proposed for linear parameter-varying systems.

Multi-objective functions instead of single objective function are considered at each sampling

time. This method leads to finding the trade-off between the objective functions. In order to

solve the multi-objective optimization problem at each sampling time, the game theory and

Nash bargaining solution are used to find the trade-off point. The Nash bargaining solution

can find the trade-off point in game theories and can tune the weighting factors properly at

each sampling time. The multi-objective optimization results are the solutions to a convex

optimization problem based on linear matrix inequalities that are solved repeatedly at each

sampling instant.

The simulation results show the effectiveness of the proposed method that can be gener-

ally used for the control system design with more than one objective functions.
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Chapter 6

Conclusion and Future Work

6.1 Concluding Remark

A novel, computationally efficient MPC approach for linear parameter-varying systems has

been developed in this thesis. Also, a diverse range of systems has been studied in this

thesis. These systems include an LPV system with probabilistic uncertainty (Chapter 3),

the 6 DOF robotics visual servoing system (Chapter 4), and the complex nonlinear TORA

system (Chapter 5).

The MPC design for nonlinear or LPV systems normally leads to non-convex optimization

problems. The TP model transformation method has been used to model the LPV systems

based on the convex combination of the LTI vertices (models). As the convexity of the TP

model, the optimization problems have been formulated in terms of LMIs, which can be

solved efficiently using available optimization software.

The accuracy and computational time of the TP model transformation have been im-

proved using HSS. With the aid of this method, the more coverage of the parameter varying

space is obtained with the fewer sample numbers compared with the equidistance sampling

method. Also, the robust MPC approach has been proposed to handle both time-varying and

probabilistic uncertainties. Instead of considering norm-bounded model uncertainty, prob-

abilistic uncertainty has been considered to reduce the conservatism of the norm-bounded

uncertain model. Propagating the probabilistic uncertainties through the system model pa-

rameters yields the most likely models of the uncertain systems in designing the controller.

The major contributions in this thesis lie in improving the performance and robustness

of the model predictive control. And they are summarized below
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• The results attained from Shimmy vibration control clearly show that the proposed

robust MPC method offers considerable benefits in reducing the optimization time.

• The proposed robust MPC method can readily handle the probabilistic uncertainty

considered for the landing gear parameter, and the simulation results demonstrate

that it can effectively reduce the shimmy vibration for the nominal operation range of

an aircraft during landing.

• The real-time MPC-based IBVS controller shows the significant improvement in opti-

mization time, which results in applying MPC on a fast dynamic system in real time.

• Different experimental tests on the 6 DOF robot set-up perfectly demonstrate the

effectiveness of the proposed robust MPC. Moreover, the controller shows the good

performance in the presence of the uncertain parameter, i.e. the feature depth, which

is usually considered as a known parameter in the previous researches.

• The novel multi-objective MPC illustrate the significant improvement in terms of per-

formance and robustness on a benchmark TORA system.

• The comparison results show clearly the supremacy of the proposed method over the

other practical methods.

• Multi-objective optimization and Nash bargaining solution can obtain the optimal

solution very close to the unconstrained optimal control solution.

• The proposed multi-objective MPC also shows the outstanding performance and dis-

turbance rejection ability for complex nonlinear systems.

6.2 Future Work

The methodologies developed in this thesis are a first study on the robust multi-objective

MPC which deal with the systems uncertainties. A number of extensions and possible future

works are listed below

• In this thesis, it has been considered that the exact states are available at each sampling

time. But, in many practical and industrial systems not all of the states are available.

Therefore, the state estimation in conjunction the multi-objective MPC design can be

considered as a potential future work.
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• A parallel computing method can be used to apply multi-objective MPC in real-time.

The proposed multi-objective MPC method needs to find a few Pareto front points at

each sampling time. Then, using Nash bargaining solution, a trade-off point is obtained

and applied to the system. The advantage of the using parallel computing method is

to find Pareto front points at the same time, but it depends on the processor numbers.

Then it would be possible to apply multi-objective MPC on-line in the future work.

• The polytopic LPV model has been considered in this thesis, so it is possible to study

other LPV models such as norm-bound and diagonal norm-bound LPVs as a future

work.
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