158 research outputs found

    Type synthesis of 6-DOF mobile parallel link mechanisms based on screw theory

    Get PDF
    Mobile parallel mechanisms (MPMs), which are parallel mechanisms with moveable bases, have previously been proposed to resolve the limited workspace of conventional parallel mechanisms. However, most previous studies on the subject focused on the kinematic analysis of some specific MPMs and did not discuss a type synthesis method for MPMs. With this in mind, we propose a screw theory-based type synthesis method to find out possible 6-degrees-of-freedom (DOF) MPM structures. In our proposed method, the 6-DOF mobility is divided into 3-DOF planar motion and 3-DOF spatial motion, both of which are realized by the transmitted planar motions of the driving units. Separately, the type synthesis of the entire MPM is divided into that of the driving unit and connecting chain. To realize 3-DOF spatial motion, two methods, applying singularity configuration and adding an additional chain, are proposed as ways to restrict undesired motions for the synthesis of the connecting chain. The driving unit is synthesized via the same type-synthesis method as the connecting chain by considering the driving unit as a planar mechanism. The method used to integrate the driving unit and the connecting chain was constructed based on whether the end pair of the connecting chain should be connected with the driving unit directly or driven by it through an actuating mechanism. As a result, 284 possible types of MPM structure are suggested and four examples of MPMs with six DOFs were synthesized to verify the feasibility of the proposed method

    Unmanned Ground Vehicles for Smart Farms

    Get PDF
    Forecasts of world population increases in the coming decades demand new production processes that are more efficient, safer, and less destructive to the environment. Industries are working to fulfill this mission by developing the smart factory concept. The agriculture world should follow industry leadership and develop approaches to implement the smart farm concept. One of the most vital elements that must be configured to meet the requirements of the new smart farms is the unmanned ground vehicles (UGV). Thus, this chapter focuses on the characteristics that the UGVs must have to function efficiently in this type of future farm. Two main approaches are discussed: automating conventional vehicles and developing specifically designed mobile platforms. The latter includes both wheeled and wheel-legged robots and an analysis of their adaptability to terrain and crops

    Unlimited-wokspace teleoperation

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2012Includes bibliographical references (leaves: 100-105)Text in English; Abstract: Turkish and Englishxiv, 109 leavesTeleoperation is, in its brief description, operating a vehicle or a manipulator from a distance. Teleoperation is used to reduce mission cost, protect humans from accidents that can be occurred during the mission, and perform complex missions for tasks that take place in areas which are difficult to reach or dangerous for humans. Teleoperation is divided into two main categories as unilateral and bilateral teleoperation according to information flow. This flow can be configured to be in either one direction (only from master to slave) or two directions (from master to slave and from slave to master). In unlimited-workspace teleoperation, one of the types of bilateral teleoperation, mobile robots are controlled by the operator and environmental information is transferred from the mobile robot to the operator. Teleoperated vehicles can be used in a variety of missions in air, on ground and in water. Therefore, different constructional types of robots can be designed for the different types of missions. This thesis aims to design and develop an unlimited-workspace teleoperation which includes an omnidirectional mobile robot as the slave system to be used in further researches. Initially, an omnidirectional mobile robot was manufactured and robot-operator interaction and efficient data transfer was provided with the established communication line. Wheel velocities were measured in real-time by Hall-effect sensors mounted on robot chassis to be integrated in controllers. A dynamic obstacle detection system, which is suitable for omnidirectional mobility, was developed and two obstacle avoidance algorithms (semi-autonomous and force reflecting) were created and tested. Distance information between the robot and the obstacles was collected by an array of sensors mounted on the robot. In the semi-autonomous teleoperation scenario, distance information is used to avoid obstacles autonomously and in the force-reflecting teleoperation scenario obstacles are informed to the user by sending back the artificially created forces acting on the slave robot. The test results indicate that obstacle avoidance performance of the developed vehicle with two algorithms is acceptable in all test scenarios. In addition, two control models were developed (kinematic and dynamic control) for the local controller of the slave robot. Also, kinematic controller was supported by gyroscope

    Autonomous Robotic Systems in a Variable World:A Task-Centric approach based on Explainable Models

    Get PDF

    Autonomous Robotic Systems in a Variable World:A Task-Centric approach based on Explainable Models

    Get PDF

    Support polygon in the hybrid legged-wheeled CENTAURO robot: modelling and control

    Get PDF
    Search for the robot capable to perform well in the real-world has sparked an interest in the hybrid locomotion systems. The hybrid legged-wheeled robots combine the advantages of the standard legged and wheeled platforms by switching between the quick and efficient wheeled motion on the flat grounds and the more versatile legged mobility on the unstructured terrains. With the locomotion flexibility offered by the hybrid mobility and appropriate control tools, these systems have high potential to excel in practical applications adapting effectively to real-world during locomanipuation operations. In contrary to their standard well-studied counterparts, kinematics of this newer type of robotic platforms has not been fully understood yet. This gap may lead to unexpected results when the standard locomotion methods are applied to hybrid legged-wheeled robots. To better understand mobility of the hybrid legged-wheeled robots, the model that describes the support polygon of a general hybrid legged-wheeled robot as a function of the wheel angular velocities without assumptions on the robot kinematics or wheel camber angle is proposed and analysed in this thesis. Based on the analysis of the developed support polygon model, a robust omnidirectional driving scheme has been designed. A continuous wheel motion is resolved through the Inverse Kinematics (IK) scheme, which generates robot motion compliant with the Non-Sliding Pure-Rolling (NSPR) condition. A higher-level scheme resolving a steering motion to comply with the non-holonomic constraint and to tackle the structural singularity is proposed. To improve the robot performance in presence to the unpredicted circumstances, the IK scheme has been enhanced with the introduction of a new reactive support polygon adaptation task. To this end, a novel quadratic programming task has been designed to push the system Support Polygon Vertices (SPVs) away from the robot Centre of Mass (CoM), while respecting the leg workspace limits. The proposed task has been expressed through the developed SPV model to account for the hardware limits. The omnidirectional driving and reactive control schemes have been verified in the simulation and hardware experiments. To that end, the simulator for the CENTAURO robot that models the actuation dynamics and the software framework for the locomotion research have been developed
    corecore