291 research outputs found

    Active power sharing and frequency regulation in inverter-based islanded microgrids subject to clock drifts, damage in power links and loss of communications

    Get PDF
    Tesi en modalitat de compendi de publicacions; hi ha diferents seccions retallades per drets de l'editorMicrogrids (MGs) are small-scale power systems containing storage elements, loads and distributed generators that are interfaced with the electric network via power electronic inverters. When an MG is in islanded mode, its dynamics are no longer dominated by the main grid. Then, inverters, driven by digital processors that may exchange data over digital communication, must act as voltage source inverters (VSIs) to take coordinated actions to ensure power quality and supply. The scope of this thesis is bounded to control strategies for active power sharing and frequency regulation in islanded MGs. The focus is on the analysis of prototype control policies when operating conditions are no longer ideal. In particular, the thesis covers the effect that a) clock drifts of digital processors, b) damage in power transmission lines, and c) failures in digital communications have in control performance. The work is submitted as a compendium of publications, including journal and international conference papers, where two main areas of research can be distinguished. The first area refers to the analysis of the effect that clock drifts have on frequency regulation and active power sharing. VSIs digital processors are equipped with oscillators, which run at not necessarily identical frequencies. As consequence, the local clocks in the physically distributed VSIs may differ. This part, reported in two conference papers and one journal paper, investigates state-of-the-art control policies when clocks of the computational devices drift. The contributions related to this part are a) the reformulation of existing control policies in terms of clock drifts, b) the steady-state analysis of these policies that offers analytical expressions to quantify the impact that drifts have on frequency and active power equilibrium points, c) the closed-loop model capable of accommodating all the policies, d) the stability analysis of the equilibrium points, and e) the experimental results. The second area copes with the analysis of the effect that electrical and communication failures have on frequency regulation and active power sharing. This investigation focuses on distributed/cooperative control policies where each inverter control action is computed using both local measures and data received from other inverters within the MG. This part, reported in one conference paper and two journal papers, investigates two control policies when the considered failures in terms of damage in power links and/or loss of communication between inverters provoke partitions within the MG. The contributions related to this part are a) the formulation of the MG as two connected graphs corresponding to the electrical and communication networks where both type of failures lead to disconnected electrical/communication sub-graphs, named partitions, that co-exist within the MG, b) the closed-loop model integrating the two graph Laplacian matrices, c) the stability analysis that identifies which type of partitions may lead to MG instability, d) the steady-state analysis that indicates how to compute the equilibrium points for the case of stable dynamics, e) a new control strategy based on switched control principles that permits avoiding the instability scenario, and f) the experimental results. For the purpose of verifying the operational performance of the analytical results, diverse experiments on a laboratory MG have been performed. The outcomes obtained are discussed and analyzed in terms of the objectives sought. Finally, conclusions and future research lines complete the thesis.Las microredes (MG) son sistemas de energía a pequeña escala que contienen elementos de almacenamiento, cargas y generadores distribuidos que están conectados con la red eléctrica a través de inversores de potencia. Cuando una MG está en modo aislado, su dinámica no está dominada por la red principal. Así, los inversores, comandados por procesadores digitales que pueden intercambiar información a través de comunicaciones digitales, deben actuar como fuentes de voltaje para ejecutar acciones coordinadas que garanticen el suministro de energía. Esta tesis se enmarca dentro de estrategias de control de última generación para compartir potencia activa y regular frecuencia en MG aisladas basadas en inversores. Su enfoque se centra en analizar estas políticas cuando las condiciones de operación no son ideales. En particular, la tesis cubre el efecto que a) desviaciones del reloj de los procesadores digitales, b) daños en las líneas de transmisión de energía, y c) fallas en las comunicaciones digitales, provocan en el rendimiento de control. El trabajo se presenta como un compendio que incluye publicaciones de revistas y de conferencias internacionales, donde se pueden distinguir dos temas principales de investigación. El primer tema comprende el análisis del efecto que tienen las desviaciones de reloj sobre la regulación de frecuencia y la compartición de potencia activa. Los procesadores de los inversores están equipados con osciladores que funcionan a frecuencias no necesariamente idénticas. Como consecuencia, los relojes locales en los inversores distribuidos físicamente, pueden diferir. Esta parte, descrita a través de dos artículos de conferencia y uno de revista, analiza el comportamiento de las políticas de control cuando los relojes de los dispositivos computacionales se desvían. Las contribuciones relacionadas con este tema son a) reformulación de las políticas de control de última generación en términos de desviaciones de reloj, b) análisis de estado estacionario de estas estrategias que ofrece expresiones analíticas para cuantificar el impacto que las desviaciones de reloj tienen sobre los puntos de equilibrio de frecuencia y potencia activa, c) modelo de lazo cerrado adaptable a todas las políticas, d) análisis de estabilidad de los puntos de equilibrio, y e) resultados experimentales. El segundo tema hace frente al análisis del efecto que las fallas eléctricas y de comunicaciones tienen sobre la regulación de frecuencia y el uso compartido de potencia activa. Esta parte se centra en políticas de control distribuido/cooperativo donde cada acción de control del inversor se calcula utilizando medidas locales y datos recibidos de otros inversores de la MG. Esta parte, descrita a través de un artículo de conferencia y dos de revista, investiga dos políticas de control cuando particiones en la MG son provocadas por daños en los enlaces de alimentación y/o por pérdida de comunicación entre inversores. Las contribuciones relacionadas con este tema son a) formulación de la MG como dos grafos correspondientes a las redes eléctrica y de comunicación donde ambos tipos de fallas conducen a sub-grafos eléctricos/comunicacionales desconectados, llamados particiones, que coexisten dentro de la MG, b) modelo de lazo cerrado que integra las matrices Laplacianas de los dos grafos, c) análisis de estabilidad que identifica las particiones que pueden conducir a inestabilidad en la MG, d) análisis de estado estacionario para calcular puntos de equilibrio cuando la dinámica es estable, e) nueva estrategia basada en principios de control conmutado para evitar el escenario de inestabilidad, y f) resultados experimentales. Con el fin de verificar el rendimiento operativo de los resultados analíticos, se han realizado diversos experimentos sobre una microred de laboratorio, los mismos que se discuten en términos de los objetivos de la tesis. El trabajo finaliza con las conclusionesPostprint (published version

    Secondary Frequency and Voltage Control of Islanded Microgrids via Distributed Averaging

    Get PDF
    In this work we present new distributed controllers for secondary frequency and voltage control in islanded microgrids. Inspired by techniques from cooperative control, the proposed controllers use localized information and nearest-neighbor communication to collectively perform secondary control actions. The frequency controller rapidly regulates the microgrid frequency to its nominal value while maintaining active power sharing among the distributed generators. Tuning of the voltage controller provides a simple and intuitive trade-off between the conflicting goals of voltage regulation and reactive power sharing. Our designs require no knowledge of the microgrid topology, impedances or loads. The distributed architecture allows for flexibility and redundancy, and eliminates the need for a central microgrid controller. We provide a voltage stability analysis and present extensive experimental results validating our designs, verifying robust performance under communication failure and during plug-and-play operation.Comment: Accepted for publication in IEEE Transactions on Industrial Electronic

    Analysis of consensus-based islanded microgrids subject to unexpected electrical and communication partitions

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksMicrogrids are power systems consisting of an electrical network composed by distributed loads and generation units that may include a communication network for improved operation. The considered microgrid in islanded mode is driven by voltage source inverters implementing decentralized droop control for active power sharing together with a communication-based consensus algorithm for frequency regulation. This paper analyses the microgrid performance subject to network failures that provoke network partitions. It is considered that the electrical partition leads to several sub-microgrids working in parallel where the power demand can be always guaranteed by the generation units, and the communication partition leads to several consensus algorithms also working in parallel. The double partitioning is analyzed through a closed-loop system model derived using the power flow equations that includes the electrical and communication connectivity. Analytical expressions for the steady-state values for both frequency and active power depending on the partitioning are derived. Selected experimental results on a low-scale laboratory microgrid illustrate the (undesirable) impact that unexpected partitions have in system performancePeer ReviewedPostprint (author's final draft

    Modeling, control and design of AC microgrids in islanded mode

    Get PDF
    Tesi per compendi de publicacions, amb diferents seccions retallades pels dret de l'editorPremi Extraordinari de Doctorat, promoció 2018-2019. Àmbit de les TICThe present doctoral thesis is focused on the analysis and design of control strategies for the secondary control layer of islanded AC microgrids without the use of communications. The work is submitted as a compendium of publications, composed by journals and international conference papers. The first contribution is a control strategy for the secondary control layer based on a switchable configuration, that does not require the use of communications. For stability analysis purposes, a closed-loop system modeling is presented, which is also used to determine design considerations for the control parameters. The second contribution is a complementary control strategy that improves the frequency regulation of the previous proposed control, using a dynamic droop gain in the primary layer. For this purpose, a time protocol that drives the variable parameters is proposed which guarantees an effectively reduction of the maximum frequency error without relying on complex techniques, maintaining the simplicity of the basis strategy and the non-use of communications. The third contribution is a multi-layer hierarchical control scheme that is composed by a droop-based primary layer, a time-driven secondary layer and an optimized power dispatch tertiary layer. The proposed control guarantees an excellent performance in terms of frequency restoration and power sharing. The fourth contribution is an improved secondary control layer strategy without communications, which presents superior operating performance compared with the previous proposals. The scheme is based on a event-driven operation of a parameter-varying filter which ensures perfect active power sharing and controllable accuracy for frequency restoration. A complete modeling that considers the topology of the MG and the electrical interaction between the DGs is derived for the stability analysis and to determine design guidelines for the key control parameters. For the purpose of analyzing and verifying the operational performance of the control schemes, an experimental MG was implemented, where selected tests were carried out. The obtained results are discussed and its relation with the doctoral thesis objectives analyzed. The thesis ends presenting conclusions and future research lines.La presente tesis doctoral se enfoca en el análisis y diseño de estrategias de control para la capa de control secundaria en microrredes aisladas de corriente alterna, sin el uso de comunicaciones. El trabajo se presenta en la modalidad de compendio, por lo que está compuesto por publicaciones previamente aceptadas en revistas y congresos científicos internacionales. La primera contribución es un estrategia de control para la capa secundaria basada en una configuración conmutable, que no requiere el uso de comunicaciones. Con el propósito de analizar la estabilidad, se presenta el modelado del sistema de lazo cerrado, que también es usado para determinar reglas de diseño de los parámetros de control. La segunda contribución es una estrategia de control complementaria que mejora la regulación de frecuencia de la propuesta anterior, usando una ganancia dinámica en la capa de control primaria. Se propone la variación de los parámetros siguiendo un protocolo de tiempo, garantizando la reducción del error máximo de frecuencia sin depender de técnicas complejas, manteniendo la simplicidad de la estrategia base y sin requerir comunicaciones. La tercera contribución es un esquema de control jerárquico compuesto por una capa primaria basada en el método de la pendiente, una capa secundaria controlada por un protocolo de tiempo y una capa terciaria que optimiza el despacho de potencias. El control propuesto garantiza un excelente desempeño en términos de la regulación de la frecuencia y la compartición de potencias. La cuarta contribución es una estrategia de control para la capa secundaria que no usa comunicaciones, la cual presenta un comportamiento operativo superior comparado con las propuestas anteriores. El esquema está basado en una operación controlada por eventos, de un filtro con parámetros variables que garantiza una perfecta compartición de potencias y una precisa restauración de frecuencia. Además, para el análisis de la estabilidad y la determinación de pautas de diseño de los parámetros se presenta un modelo que considera la topología de la microrred y las interacciones eléctricas de los generadores. Con el objetivo de analizar y verificar el desempeño operativo de los esquemas de control, se implementó una microrred experimental donde se llevaron a cabo las pruebas requeridas. Se discutieron los resultados obtenidos y se analizó su relación con los objetivos de la tesis doctoral. El documento termina presentado las conclusiones así como futuras líneas de investigaciónAward-winningPostprint (published version

    Distributed Control Strategies for Microgrids: An Overview

    Get PDF
    There is an increasing interest and research effort focused on the analysis, design and implementation of distributed control systems for AC, DC and hybrid AC/DC microgrids. It is claimed that distributed controllers have several advantages over centralised control schemes, e.g., improved reliability, flexibility, controllability, black start operation, robustness to failure in the communication links, etc. In this work, an overview of the state-of-the-art of distributed cooperative control systems for isolated microgrids is presented. Protocols for cooperative control such as linear consensus, heterogeneous consensus and finite-time consensus are discussed and reviewed in this paper. Distributed cooperative algorithms for primary and secondary control systems, including (among others issues) virtual impedance, synthetic inertia, droop-free control, stability analysis, imbalance sharing, total harmonic distortion regulation, are also reviewed and discussed in this survey. Tertiary control systems, e.g., for economic dispatch of electric energy, based on cooperative control approaches, are also addressed in this work. This review also highlights existing issues, research challenges and future trends in distributed cooperative control of microgrids and their future applications

    Design And Implementation Of Co-Operative Control Strategy For Hybrid AC/DC Microgrids

    Get PDF
    This thesis is mainly divided in two major sections: 1) Modelling and control of AC microgrid, DC microgrid, Hybrid AC/DC microgrid using distributed co-operative control, and 2) Development of a four bus laboratory prototype of an AC microgrid system. At first, a distributed cooperative control (DCC) for a DC microgrid considering the state-of-charge (SoC) of the batteries in a typical plug-in-electric-vehicle (PEV) is developed. In DC microgrids, this methodology is developed to assist the load sharing amongst the distributed generation units (DGs), according to their ratings with improved voltage regulation. Subsequently, a DCC based control algorithm for AC microgrid is also investigated to improve the performance of AC microgrid in terms of power sharing among the DGs, voltage regulation and frequency deviation. The results validate the advantages of the proposed methodology as compared to traditional droop control of AC microgrid. The DCC-based control methodology for AC microgrid and DC microgrid are further expanded to develop a DCC-based power management algorithm for hybrid AC/DC microgrid. The developed algorithm for hybrid microgrid controls the power flow through the interfacing converter (IC) between the AC and DC microgrids. This will facilitate the power sharing between the DGs according to their power ratings. Moreover, it enables the fixed scheduled power delivery at different operating conditions, while maintaining good voltage regulation and improved frequency profile. The second section provides a detailed explanation and step-by-step design and development of an AC/DC microgrid testbed. Controllers for the three-phase inverters are designed and tested on different generation units along with their corresponding inductor-capacitor-inductor (LCL) filters to eliminate the switching frequency harmonics. Electric power distribution line models are developed to form the microgrid network topology. Voltage and current sensors are placed in the proper positions to achieve a full visibility over the microgrid. A running average filter (RAF) based enhanced phase-locked-loop (EPLL) is designed and implemented to extract frequency and phase angle information. A PLL-based synchronizing scheme is also developed to synchronize the DGs to the microgrid. The developed laboratory prototype runs on dSpace platform for real time data acquisition, communication and controller implementation

    Evolution of microgrids with converter-interfaced generations: Challenges and opportunities

    Full text link
    © 2019 Elsevier Ltd Although microgrids facilitate the increased penetration of distributed generations (DGs) and improve the security of power supplies, they have some issues that need to be better understood and addressed before realising the full potential of microgrids. This paper presents a comprehensive list of challenges and opportunities supported by a literature review on the evolution of converter-based microgrids. The discussion in this paper presented with a view to establishing microgrids as distinct from the existing distribution systems. This is accomplished by, firstly, describing the challenges and benefits of using DG units in a distribution network and then those of microgrid ones. Also, the definitions, classifications and characteristics of microgrids are summarised to provide a sound basis for novice researchers to undertake ongoing research on microgrids

    Review of Active and Reactive Power Sharing Strategies in Hierarchical Controlled Microgrids

    Get PDF
    corecore