4,142 research outputs found

    A plug-and-play ripple mitigation approach for DC-links in hybrid systems

    Get PDF
    © 2016 IEEE.In this paper, a plug-and-play ripple mitigation technique is proposed. It requires only the sensing of the DC-link voltage and can operate fully independently to remove the low-frequency voltage ripple. The proposed technique is nonintrusive to the existing hardware and enables hot-swap operation without disrupting the normal functionality of the existing power system. It is user-friendly, modular and suitable for plug-and-play operation. The experimental results demonstrate the effectiveness of the ripple-mitigation capability of the proposed device. The DC-link voltage ripple in a 110 W miniature hybrid system comprising an AC/DC converter and two resistive loads is shown to be significantly reduced from 61 V to only 3.3 V. Moreover, it is shown that with the proposed device, the system reliability has been improved by alleviating the components' thermal stresses

    Performance comparison of input current ripple reduction methods in UPS applications with hybrid PEM fuel cell/supercapacitor power sources

    Full text link
    An uninterruptible power supply (UPS) system with different input current ripple reduction methods is proposed, and a comparison research has been conducted about these methods. The proposed UPS system consists of a 63-cell 300 W proton exchange membrane (PEM) fuel cell stack, two 16-cell supercapacitors (SCs) in series, a high-efficiency push-pull DC/DC converter and a half-bridge DC/AC inverter. Besides that the traditional push-pull DC/DC converter has inherent advantages of low input-current stress and high voltage conversion ratio, the SCs, LC filter, and an active clamp circuit are employed to reduce the input current ripples in the UPS system. First, the input current ripple generation and performance without an external component are analyzed and modeled in the PEM fuel cell. Then the input current ripple reduction methods mentioned above are proposed and operated in the designed UPS system. Finally, the experimental results show that the input current ripple can be further reduced by using different current ripple reduction approaches, and the active compensation method has better performance than the passive compensation method. The input current ripple is less than 5% of the rated input current. © 2014 Elsevier Inc. All rights reserved

    Input current ripple reduction and high efficiency for PEM fuel cell power conditioning system

    Full text link
    © 2017 IEEE. To solve the issues of the open-loop control accuracy in a proton exchange membrane (PEM) fuel cell power conditioning system (PCS) with active clamp push-pull DC/DC converter for input current ripple reduction, a novel closed-loop digital-controlled method is proposed. The proposed PEM fuel cell PCS consists of a high-efficiency high-step-up current-fed resonant push-pull DC/DC converter and a half-bridge inverter. A fully digital-controlled strategy in the active-clamped circuit is employed to reduce the voltage spike and low frequency current ripple (LFCR) on the power switches for improving the lifespan of PEM fuel cell and raising the system reliability. By using the closed-loop current ripple reduction control, the LFCR is further reduced. A 300 W prototype is implemented and tested. Experimental results show that the minimum efficiency at full load is about 94.8% and the ripple current is less than 1.2% of the rated input current

    Integration of an Active Filter and a Single-Phase AC/DC Converter with Reduced Capacitance Requirement and Component Count

    Get PDF
    Existing methods of incorporating an active filter into an AC/DC converter for eliminating electrolytic capacitors usually require extra power switches. This inevitably leads to an increased system cost and degraded energy efficiency. In this paper, a concept of active-filter integration for single-phase AC/DC converters is reported. The resultant converters can provide simultaneous functions of power factor correction, DC voltage regulation, and active power decoupling for mitigating the low-frequency DC voltage ripple, without an electrolytic capacitor and extra power switch. To complement the operation, two closed-loop voltage-ripple-based reference generation methods are developed for controlling the energy storage components to achieve active power decoupling. Both simulation and experiment have confirmed the eligibility of the proposed concept and control methods in a 210-W rectification system comprising an H-bridge converter with a half-bridge active filter. Interestingly, the end converters (Type I and Type II) can be readily available using a conventional H-bridge converter with minor hardware modification. A stable DC output with merely 1.1% ripple is realized with two 50-μF film capacitors. For the same ripple performance, a 900-μF capacitor is required in conventional converters without an active filter. Moreover, it is found out that the active-filter integration concept might even improve the efficiency performance of the end converters as compared with the original AC/DC converter without integration

    Mitigation of low-frequency current ripple in fuel-cell inverter systems through waveform control

    Get PDF
    published_or_final_versio

    Comprehensive influences measurement and analysis of power converter low frequency current ripple on PEM fuel cell

    Full text link
    © 2019 Hydrogen Energy Publications LLC To deeply understand the influences of power converter's low frequency current ripple (LFCR) and harmonics on a proton exchange membrane fuel cell (PEMFC) in its power conditioning system (PCS), a comprehensive measurement and analysis of the influences of LFCR and harmonics on PEMFC's performance and durability is investigated in this paper. Based on an equivalent circuit model of PEMFC stack and a mechanism model for evaluating the LFCR effects on the PEMFC, this paper studies primarily and systematically the comprehensive influences of LFCR and harmonics on PEMFC performances and durability, such as (1) degrading the PEMFC performance, (2) shortening the lifetime of PEMFC, (3) reducing the stack output power, (4) lowing its availability efficiency, (5) producing more heat and raising the PEMFC temperature, (6) consuming more fuel, and (7) decreasing the fuel utilization. Finally, a Horizon 300 W PEMFC stack is implemented and tested

    STEROWANIE ORAZ SYNCHRONIZACJA DWUPOZIOMOWEGO FALOWNIKA NAPIĘCIA W WARUNKACH PRZEJŚCIOWEJ ASYMETRII NAPIĘĆ SIECI

    Get PDF
    This paper presents the operation of grid tied, two level voltage source inverter (VSI) during network voltage unbalance. The control system was implemented in synchronous rotating reference frame dq0 (SRF). Two types of control structures were investigated herein. First utilizes the Double Decoupled SRF Phase-locked loop (DDSRF-PLL) synchronisation with positive and negative sequence currents control. Second one is simplified system that does not provide symmetrical components decomposition and decoupling for synchronisation. Simulation results exhibited a superior performance of the DDSRF-PLL control system under grid voltage unbalance.Niniejszy artykuł przedstawia pracę dwupoziomowego falownika napięcia współpracującego z siecią, podczas przejściowej asymetrii napięć. System sterowania został zaimplementowany w wirującym układzie synchronicznym dq0. Przeanalizowano dwa typy sterowania. W pierwszym zastosowano metodę synchronizacji z odprzęganiem DDSRF-PLL wraz z możliwością kontroli prądów składowej zgodnej i przeciwnej. Drugi natomiast w swoje uproszczeni formie nie pozwalała na sterowanie obu składowych symetrycznych, zabrakło również odprzęgania podczas synchronizacji z siecią. Wyniki symulacji pokazały o wiele lepsze działanie pierwszej metody sterowania

    STI-2062-1

    Full text link
    This project investigated solar variability, power conversion and electric power grid response aspects of high penetration solar PV. These are the primary determining factors for acceptable penetration levels. Therefore, the study not only focused on the power system interactions, but also on the design of advanced power conditioners to explore more efficient design options and to look into advanced control impacts to the higher penetration PV deployment systems. Through extensive laboratory and field testing, the team gathered the essential information to better understand grid characteristics, PV systems configuration and power conditioning systems

    A review on mitigation technologies of low frequency current ripple injected into fuel cell and a case study

    Full text link
    © 2020 Hydrogen Energy Publications LLC This paper reviews the state-of-the-art of mitigation technologies of low frequency current ripple (LFCR) injected into fuel cell (FC). Although there are their own merits and demerits, the optimized LFCR control techniques and topology structures are characterized in many aspects like performance, durability, reliability and lifetime of FC. Three mains topologies and mitigation methods of LFCR have been investigated based on the literature review, which are the passive compensation methods, active compensation methods, and passive and active hybrid compensation methods. Some rules based tables are set to evaluate the LFCR against the topologies, control strategies, current ripple, application and advantages/limitations. Moreover, the mitigation control strategies are compared side by side with their specific applications in FC system. To select and implement them, this review can provide a reference and basis for the researchers in related fields. Finally, a case study in an uninterruptible power supply application is conducted
    corecore