23 research outputs found

    Active classification with comparison queries

    Full text link
    We study an extension of active learning in which the learning algorithm may ask the annotator to compare the distances of two examples from the boundary of their label-class. For example, in a recommendation system application (say for restaurants), the annotator may be asked whether she liked or disliked a specific restaurant (a label query); or which one of two restaurants did she like more (a comparison query). We focus on the class of half spaces, and show that under natural assumptions, such as large margin or bounded bit-description of the input examples, it is possible to reveal all the labels of a sample of size nn using approximately O(logn)O(\log n) queries. This implies an exponential improvement over classical active learning, where only label queries are allowed. We complement these results by showing that if any of these assumptions is removed then, in the worst case, Ω(n)\Omega(n) queries are required. Our results follow from a new general framework of active learning with additional queries. We identify a combinatorial dimension, called the \emph{inference dimension}, that captures the query complexity when each additional query is determined by O(1)O(1) examples (such as comparison queries, each of which is determined by the two compared examples). Our results for half spaces follow by bounding the inference dimension in the cases discussed above.Comment: 23 pages (not including references), 1 figure. The new version contains a minor fix in the proof of Lemma 4.

    Beyond Disagreement-based Agnostic Active Learning

    Full text link
    We study agnostic active learning, where the goal is to learn a classifier in a pre-specified hypothesis class interactively with as few label queries as possible, while making no assumptions on the true function generating the labels. The main algorithms for this problem are {\em{disagreement-based active learning}}, which has a high label requirement, and {\em{margin-based active learning}}, which only applies to fairly restricted settings. A major challenge is to find an algorithm which achieves better label complexity, is consistent in an agnostic setting, and applies to general classification problems. In this paper, we provide such an algorithm. Our solution is based on two novel contributions -- a reduction from consistent active learning to confidence-rated prediction with guaranteed error, and a novel confidence-rated predictor

    Online Active Learning of Reject Option Classifiers

    Full text link
    Active learning is an important technique to reduce the number of labeled examples in supervised learning. Active learning for binary classification has been well addressed in machine learning. However, active learning of the reject option classifier remains unaddressed. In this paper, we propose novel algorithms for active learning of reject option classifiers. We develop an active learning algorithm using double ramp loss function. We provide mistake bounds for this algorithm. We also propose a new loss function called double sigmoid loss function for reject option and corresponding active learning algorithm. We offer a convergence guarantee for this algorithm. We provide extensive experimental results to show the effectiveness of the proposed algorithms. The proposed algorithms efficiently reduce the number of label examples required
    corecore