21 research outputs found

    Active Learning for Deep Detection Neural Networks

    Get PDF
    The cost of drawing object bounding boxes (i.e. labeling) for millions of images is prohibitively high. For instance, labeling pedestrians in a regular urban image could take 35 seconds on average. Active learning aims to reduce the cost of labeling by selecting only those images that are informative to improve the detection network accuracy. In this paper, we propose a method to perform active learning of object detectors based on convolutional neural networks. We propose a new image-level scoring process to rank unlabeled images for their automatic selection, which clearly outperforms classical scores. The proposed method can be applied to videos and sets of still images. In the former case, temporal selection rules can complement our scoring process. As a relevant use case, we extensively study the performance of our method on the task of pedestrian detection. Overall, the experiments show that the proposed method performs better than random selection. Our codes are publicly available at www.gitlab.com/haghdam/deep_active_learning.Comment: Accepted at ICCV 201

    Classification Committee for Active Deep Object Detection

    Full text link
    In object detection, the cost of labeling is much high because it needs not only to confirm the categories of multiple objects in an image but also to accurately determine the bounding boxes of each object. Thus, integrating active learning into object detection will raise pretty positive significance. In this paper, we propose a classification committee for active deep object detection method by introducing a discrepancy mechanism of multiple classifiers for samples' selection when training object detectors. The model contains a main detector and a classification committee. The main detector denotes the target object detector trained from a labeled pool composed of the selected informative images. The role of the classification committee is to select the most informative images according to their uncertainty values from the view of classification, which is expected to focus more on the discrepancy and representative of instances. Specifically, they compute the uncertainty for a specified instance within the image by measuring its discrepancy output by the committee pre-trained via the proposed Maximum Classifiers Discrepancy Group Loss (MCDGL). The most informative images are finally determined by selecting the ones with many high-uncertainty instances. Besides, to mitigate the impact of interference instances, we design a Focus on Positive Instances Loss (FPIL) to make the committee the ability to automatically focus on the representative instances as well as precisely encode their discrepancies for the same instance. Experiments are conducted on Pascal VOC and COCO datasets versus some popular object detectors. And results show that our method outperforms the state-of-the-art active learning methods, which verifies the effectiveness of the proposed method

    Introducing artificial data generation in active learning for land use/land cover classification

    Get PDF
    Fonseca, J., Douzas, G., & Bacao, F. (2021). Increasing the effectiveness of active learning: Introducing artificial data generation in active learning for land use/land cover classification. Remote Sensing, 13(13), 1-20. [2619]. https://doi.org/10.3390/rs13132619In remote sensing, Active Learning (AL) has become an important technique to collect informative ground truth data “on-demand” for supervised classification tasks. Despite its effectiveness, it is still significantly reliant on user interaction, which makes it both expensive and time consuming to implement. Most of the current literature focuses on the optimization of AL by modifying the selection criteria and the classifiers used. Although improvements in these areas will result in more effective data collection, the use of artificial data sources to reduce human–computer interaction remains unexplored. In this paper, we introduce a new component to the typical AL framework, the data generator, a source of artificial data to reduce the amount of user-labeled data required in AL. The implementation of the proposed AL framework is done using Geometric SMOTE as the data generator. We compare the new AL framework to the original one using similar acquisition functions and classifiers over three AL-specific performance metrics in seven benchmark datasets. We show that this modification of the AL framework significantly reduces cost and time requirements for a successful AL implementation in all of the datasets used in the experiment.publishersversionpublishe

    An active learning framework for duplicate detection in SaaS platforms

    Get PDF
    With the rapid growth of users’ data in SaaS (Software-as-a-service) platforms using micro-services, it becomes essential to detect duplicated entities for ensuring the integrity and consistency of data in many companies and businesses (primarily multinational corporations). Due to the large volume of databases today, the expected duplicate detection algorithms need to be not only accurate but also practical, which means that it can release the detection results as fast as possible for a given request. Among existing algorithms for the deduplicate detection problem, using Siamese neural networks with the triplet loss has become one of the robust ways to measure the similarity of two entities (texts, paragraphs, or documents) for identifying all possible duplicated items. In this paper, we first propose a practical framework for building a duplicate detection system in a SaaS platform. Second, we present a new active learning schema for training and updating duplicate detection algorithms. In this schema, we not only allow the crowd to provide more annotated data for enhancing the chosen learning model but also use the Siamese neural networks as well as the triplet loss to construct an efficient model for the problem. Finally, we design a user interface of our proposed deduplicate detection system, which can easily apply for empirical applications in different companies
    corecore