10,536 research outputs found

    A Novel Multiobjective Cell Switch-Off Framework for Cellular Networks

    Get PDF
    Cell Switch-Off (CSO) is recognized as a promising approach to reduce the energy consumption in next-generation cellular networks. However, CSO poses serious challenges not only from the resource allocation perspective but also from the implementation point of view. Indeed, CSO represents a difficult optimization problem due to its NP-complete nature. Moreover, there are a number of important practical limitations in the implementation of CSO schemes, such as the need for minimizing the real-time complexity and the number of on-off/off-on transitions and CSO-induced handovers. This article introduces a novel approach to CSO based on multiobjective optimization that makes use of the statistical description of the service demand (known by operators). In addition, downlink and uplink coverage criteria are included and a comparative analysis between different models to characterize intercell interference is also presented to shed light on their impact on CSO. The framework distinguishes itself from other proposals in two ways: 1) The number of on-off/off-on transitions as well as handovers are minimized, and 2) the computationally-heavy part of the algorithm is executed offline, which makes its implementation feasible. The results show that the proposed scheme achieves substantial energy savings in small cell deployments where service demand is not uniformly distributed, without compromising the Quality-of-Service (QoS) or requiring heavy real-time processing

    Resource Allocation for Energy-Efficient Device-to-Device Communication in 4G Networks

    Full text link
    Device-to-device (D2D) communications as an underlay of a LTE-A (4G) network can reduce the traffic load as well as power consumption in cellular networks by way of utilizing peer-to-peer links for users in proximity of each other. This would enable other cellular users to increment their traffic, and the aggregate traffic for all users can be significantly increased without requiring additional spectrum. However, D2D communications may increase interference to cellular users (CUs) and force CUs to increase their transmit power levels in order to maintain their required quality-of-service (QoS). This paper proposes an energy-efficient resource allocation scheme for D2D communications as an underlay of a fully loaded LTE-A (4G) cellular network. Simulations show that the proposed scheme allocates cellular uplink resources (transmit power and channel) to D2D pairs while maintaining the required QoS for D2D and cellular users and minimizing the total uplink transmit power for all users.Comment: 2014 7th International Symposium on Telecommunications (IST'2014

    Energy Efficiency of Hybrid-Power HetNets: A Population-like Games Approach

    Get PDF
    In this paper, a distributed control scheme based on population games is proposed. The controller is in charge of dealing with the energy consumption problem in a Heterogeneous Cellular Network (HetNet) powered by hybrid energy sources (grid and renewable energy) while guaranteeing appropriate quality of service (QoS) level at the same time. Unlike the conventional approach in population games, it considers both atomicity and non-anonymity. Simulation results show that the proposed population-games approach reduces grid consumption by up to about 12% compared to the traditional best-signal level association policy.U.S. Air Force Office of Scientific Research FA9550-17-1-0259Ministerio de Cultura y Deporte DPI2016-76493-C3-3-RMinisterio de EconomĂ­a y Empresa DPI2017-86918-

    Planning Solar in Energy-managed Cellular Networks

    Get PDF
    There has been a lot of interest recently on the energy efficiency and environmental impact of wireless networks. Given that the base stations are the network elements that use most of this energy, much research has dealt with ways to reduce the energy used by the base stations by turning them off during periods of low load. In addition to this, installing a solar harvesting sys- tem composed of solar panels, batteries, charge con- trollers and inverters is another way to further reduce the network environmental impact and some research has been dealing with this for individual base stations. In this paper, we show that both techniques are tightly coupled. We propose a mathematical model that captures the synergy between solar installation over a network and the dynamic operation of energy-managed base stations. We study the interactions between the two methods for networks of hundreds of base stations and show that the order in which each method is intro- duced into the system does make a difference in terms of cost and performance. We also show that installing solar is not always the best solution even when the unit cost of the solar energy is smaller than the grid cost. We conclude that planning the solar installation and energy management of the base stations have to be done jointly

    Evaluation of the potential for energy saving in macrocell and femtocell networks using a heuristic introducing sleep modes in base stations

    Get PDF
    In mobile technologies two trends are competing. On the one hand, the mobile access network requires optimisation in energy consumption. On the other hand, data volumes and required bit rates are rapidly increasing. The latter trend requires the deployment of more dense mobile access networks as the higher bit rates are available at shorter distance from the base station. In order to improve the energy efficiency, the introduction of sleep modes is required. We derive a heuristic which allows establishing a baseline of active base station fractions in order to be able to evaluate mobile access network designs. We demonstrate that sleep modes can lead to significant improvements in energy efficiency and act as an enabler for femtocell deployments
    • …
    corecore