23 research outputs found

    Learning relational dynamics of stochastic domains for planning

    Get PDF
    Probabilistic planners are very flexible tools that can provide good solutions for difficult tasks. However, they rely on a model of the domain, which may be costly to either hand code or automatically learn for complex tasks. We propose a new learning approach that (a) requires only a set of state transitions to learn the model; (b) can cope with uncertainty in the effects; (c) uses a relational representation to generalize over different objects; and (d) in addition to action effects, it can also learn exogenous effects that are not related to any action, e.g., moving objects, endogenous growth and natural development. The proposed learning approach combines a multi-valued variant of inductive logic programming for the generation of candidate models, with an optimization method to select the best set of planning operators to model a problem. Finally, experimental validation is provided that shows improvements over previous work.Peer ReviewedPostprint (author's final draft

    A Review on Learning Planning Action Models for Socio-Communicative HRI

    No full text
    National audienceFor social robots to be brought more into widespread use in the fields of companionship, care taking and domestic help, they must be capable of demonstrating social intelligence. In order to be acceptable, they must exhibit socio-communicative skills. Classic approaches to program HRI from observed human-human interactions fails to capture the subtlety of multimodal interactions as well as the key structural differences between robots and humans. The former arises due to a difficulty in quantifying and coding mul-timodal behaviours, while the latter due to a difference of the degrees of liberty between a robot and a human. However , the notion of reverse engineering from multimodal HRI traces to learn the underlying behavioral blueprint of the robot given multimodal traces seems an option worth exploring. With this spirit, the entire HRI can be seen as a sequence of exchanges of speech acts between the robot and human, each act treated as an action, bearing in mind that the entire sequence is goal-driven. Thus, this entire interaction can be treated as a sequence of actions propelling the interaction from its initial to goal state, also known as a plan in the domain of AI planning. In the same domain, this action sequence that stems from plan execution can be represented as a trace. AI techniques, such as machine learning , can be used to learn behavioral models (also known as symbolic action models in AI), intended to be reusable for AI planning, from the aforementioned multimodal traces. This article reviews recent machine learning techniques for learning planning action models which can be applied to the field of HRI with the intent of rendering robots as socio-communicative

    Planning Technologies for Interactive Storytelling

    Get PDF
    Since AI planning was first proposed for the task of narrative generation in interactive storytelling (IS), it has emerged as the dominant approach in this field. This chapter traces the use of planning technologies in this area, considers the core issues involved in the application of planning technologies in IS, and identifies some of the remaining challenges
    corecore