11 research outputs found

    A discussion on the validation tests employed to compare human action recognition methods using the MSR Action3D dataset

    Get PDF
    This paper aims to determine which is the best human action recognition method based on features extracted from RGB-D devices, such as the Microsoft Kinect. A review of all the papers that make reference to MSR Action3D, the most used dataset that includes depth information acquired from a RGB-D device, has been performed. We found that the validation method used by each work differs from the others. So, a direct comparison among works cannot be made. However, almost all the works present their results comparing them without taking into account this issue. Therefore, we present different rankings according to the methodology used for the validation in orden to clarify the existing confusion.Comment: 16 pages and 7 table

    DeepHuMS: Deep Human Motion Signature for 3D Skeletal Sequences

    Full text link
    3D Human Motion Indexing and Retrieval is an interesting problem due to the rise of several data-driven applications aimed at analyzing and/or re-utilizing 3D human skeletal data, such as data-driven animation, analysis of sports bio-mechanics, human surveillance etc. Spatio-temporal articulations of humans, noisy/missing data, different speeds of the same motion etc. make it challenging and several of the existing state of the art methods use hand-craft features along with optimization based or histogram based comparison in order to perform retrieval. Further, they demonstrate it only for very small datasets and few classes. We make a case for using a learned representation that should recognize the motion as well as enforce a discriminative ranking. To that end, we propose, a 3D human motion descriptor learned using a deep network. Our learned embedding is generalizable and applicable to real-world data - addressing the aforementioned challenges and further enables sub-motion searching in its embedding space using another network. Our model exploits the inter-class similarity using trajectory cues, and performs far superior in a self-supervised setting. State of the art results on all these fronts is shown on two large scale 3D human motion datasets - NTU RGB+D and HDM05.Comment: Under Review, Conferenc

    Clustering and Analysis of User Motions to Enhance Human Learning: A First Study Case with the Flip Bottle Challenge

    Get PDF
    International audienceMore and more domains such as industry, sport, medicine, Human Computer Interaction (HCI) and education analyze user motions to observe human behavior, follow and predict its action, intention and emotion, to interact with computer systems and enhance user experience in Virtual (VR) and Augmented Reality (AR). In the context of human learning of movements, existing software applications and methods rarely use 3D captured motions for pedagogical feedback. This comes from several issues related to the highly complex and dimensional nature of these data, and by the need to correlate this information with the observation needs of the teacher. Such issues could be solved by the use of machine learning techniques, which could provide efficient and complementary feedback in addition to the expert advice, from motion data. The context of the presented work is the improvement of the human learning process of a motion, based on clustering techniques. The main goal is to give advice according to the analysis of clusters representing user profiles during a learning situation. To achieve this purpose, a first step is to work on the separation of the motions into different categories according to a set of well-chosen features. In this way, allowing a better and more accurate analysis of the motion characteristics is expected. An experimentation was conducted with the Bottle Flip Challenge. Human motions were first captured and filtered, in order to compensate for hardware related errors. Descriptors related to speed and acceleration are then computed, and used in two different automatic approaches. The first one tries to separate the motions, using the computed descriptors, and the second one, compares the obtained separation with the ground truth. The results show that, while the obtained partitioning is not relevant to the degree of success of the task, the data are separable using the descriptors

    Skeleton-Based Human Action Recognition with Global Context-Aware Attention LSTM Networks

    Full text link
    Human action recognition in 3D skeleton sequences has attracted a lot of research attention. Recently, Long Short-Term Memory (LSTM) networks have shown promising performance in this task due to their strengths in modeling the dependencies and dynamics in sequential data. As not all skeletal joints are informative for action recognition, and the irrelevant joints often bring noise which can degrade the performance, we need to pay more attention to the informative ones. However, the original LSTM network does not have explicit attention ability. In this paper, we propose a new class of LSTM network, Global Context-Aware Attention LSTM (GCA-LSTM), for skeleton based action recognition. This network is capable of selectively focusing on the informative joints in each frame of each skeleton sequence by using a global context memory cell. To further improve the attention capability of our network, we also introduce a recurrent attention mechanism, with which the attention performance of the network can be enhanced progressively. Moreover, we propose a stepwise training scheme in order to train our network effectively. Our approach achieves state-of-the-art performance on five challenging benchmark datasets for skeleton based action recognition

    Motion Segment Decomposition of RGB-D Sequences for Human Behavior Understanding

    Get PDF
    International audienceIn this paper, we propose a framework for analyzing and understanding human behavior from depth videos. The proposed solution first employs shape analysis of the human pose across time to decompose the full motion into short temporal segments representing elementary motions. Then, each segment is characterized by human motion and depth appearance around hand joints to describe the change in pose of the body and the interaction with objects. Finally , the sequence of temporal segments is modeled through a Dynamic Naive Bayes classifier, which captures the dynamics of elementary motions characterizing human behavior. Experiments on four challenging datasets evaluate the potential of the proposed approach in different contexts, including gesture or activity recognition and online activity detection. Competitive results in comparison with state of the art methods are reported

    A State Space Approach to Dynamic Modeling of Mouse-Tracking Data

    Get PDF
    Mouse-tracking recording techniques are becoming very attractive in experimental psychology. They provide an effective means of enhancing the measurement of some real-time cognitive processes involved in categorization, decision-making, and lexical decision tasks. Mouse-tracking data are commonly analyzed using a two-step procedure which first summarizes individuals' hand trajectories with independent measures, and then applies standard statistical models on them. However, this approach can be problematic in many cases. In particular, it does not provide a direct way to capitalize the richness of hand movement variability within a consistent and unified representation. In this article we present a novel, unified framework for mouse-tracking data. Unlike standard approaches to mouse-tracking, our proposal uses stochastic state-space modeling to represent the observed trajectories in terms of both individual movement dynamics and experimental variables. The model is estimated via a Metropolis-Hastings algorithm coupled with a non-linear recursive filter. The characteristics and potentials of the proposed approach are illustrated using a lexical decision case study. The results highlighted how dynamic modeling of mouse-tracking data can considerably improve the analysis of mouse-tracking tasks and the conclusions researchers can draw from them
    corecore