679 research outputs found

    TRECVid 2011 Experiments at Dublin City University

    Get PDF
    This year the iAd-DCU team participated in three of the assigned TRECVid 2011 tasks; Semantic Indexing (SIN), Interactive Known-Item Search (KIS) and Multimedia Event Detection (MED). For the SIN task we presented three full runs using global features, local features and fusion of global, local features and relationships between concepts respectively. The evaluation results show that local features achieve better performance, with marginal gains found when introducing global features and relationships between concepts. With regard to our KIS submission, similar to our 2010 KIS experiments, we have implemented an iPad interface to a KIS video search tool. The aim of this year’s experimentation was to evaluate different display methodologies for KIS interaction. For this work, we integrate a clustering element for keyframes, which operates over MPEG-7 features using k-means clustering. In addition, we employ concept detection, not simply for search, but as a means of choosing most representative keyframes for ranked items. For our experiments we compare the baseline non-clustering system to a clustering system on a topic by topic basis. Finally, for the first time this year the iAd group at DCU has been involved in the MED Task. Two techniques are compared, employing low-level features directly and using concepts as intermediate representations. Evaluation results show promising initial results when performing event detection using concepts as intermediate representations

    A robust and efficient video representation for action recognition

    Get PDF
    This paper introduces a state-of-the-art video representation and applies it to efficient action recognition and detection. We first propose to improve the popular dense trajectory features by explicit camera motion estimation. More specifically, we extract feature point matches between frames using SURF descriptors and dense optical flow. The matches are used to estimate a homography with RANSAC. To improve the robustness of homography estimation, a human detector is employed to remove outlier matches from the human body as human motion is not constrained by the camera. Trajectories consistent with the homography are considered as due to camera motion, and thus removed. We also use the homography to cancel out camera motion from the optical flow. This results in significant improvement on motion-based HOF and MBH descriptors. We further explore the recent Fisher vector as an alternative feature encoding approach to the standard bag-of-words histogram, and consider different ways to include spatial layout information in these encodings. We present a large and varied set of evaluations, considering (i) classification of short basic actions on six datasets, (ii) localization of such actions in feature-length movies, and (iii) large-scale recognition of complex events. We find that our improved trajectory features significantly outperform previous dense trajectories, and that Fisher vectors are superior to bag-of-words encodings for video recognition tasks. In all three tasks, we show substantial improvements over the state-of-the-art results

    SAVASA project @ TRECVID 2012: interactive surveillance event detection

    Get PDF
    In this paper we describe our participation in the interactive surveillance event detection task at TRECVid 2012. The system we developed was comprised of individual classifiers brought together behind a simple video search interface that enabled users to select relevant segments based on down~sampled animated gifs. Two types of user -- `experts' and `end users' -- performed the evaluations. Due to time constraints we focussed on three events -- ObjectPut, PersonRuns and Pointing -- and two of the five available cameras (1 and 3). Results from the interactive runs as well as discussion of the performance of the underlying retrospective classifiers are presented

    The TRECVID 2007 BBC rushes summarization evaluation pilot

    Get PDF
    This paper provides an overview of a pilot evaluation of video summaries using rushes from several BBC dramatic series. It was carried out under the auspices of TRECVID. Twenty-two research teams submitted video summaries of up to 4% duration, of 42 individual rushes video files aimed at compressing out redundant and insignificant material. The output of two baseline systems built on straightforward content reduction techniques was contributed by Carnegie Mellon University as a control. Procedures for developing ground truth lists of important segments from each video were developed at Dublin City University and applied to the BBC video. At NIST each summary was judged by three humans with respect to how much of the ground truth was included, how easy the summary was to understand, and how much repeated material the summary contained. Additional objective measures included: how long it took the system to create the summary, how long it took the assessor to judge it against the ground truth, and what the summary's duration was. Assessor agreement on finding desired segments averaged 78% and results indicate that while it is difficult to exceed the performance of baselines, a few systems did

    Exploiting Image-trained CNN Architectures for Unconstrained Video Classification

    Full text link
    We conduct an in-depth exploration of different strategies for doing event detection in videos using convolutional neural networks (CNNs) trained for image classification. We study different ways of performing spatial and temporal pooling, feature normalization, choice of CNN layers as well as choice of classifiers. Making judicious choices along these dimensions led to a very significant increase in performance over more naive approaches that have been used till now. We evaluate our approach on the challenging TRECVID MED'14 dataset with two popular CNN architectures pretrained on ImageNet. On this MED'14 dataset, our methods, based entirely on image-trained CNN features, can outperform several state-of-the-art non-CNN models. Our proposed late fusion of CNN- and motion-based features can further increase the mean average precision (mAP) on MED'14 from 34.95% to 38.74%. The fusion approach achieves the state-of-the-art classification performance on the challenging UCF-101 dataset

    Detecting complex events in user-generated video using concept classifiers

    Get PDF
    Automatic detection of complex events in user-generated videos (UGV) is a challenging task due to its new characteristics differing from broadcast video. In this work, we firstly summarize the new characteristics of UGV, and then explore how to utilize concept classifiers to recognize complex events in UGV content. The method starts from manually selecting a variety of relevant concepts, followed byconstructing classifiers for these concepts. Finally, complex event detectors are learned by using the concatenated probabilistic scores of these concept classifiers as features. Further, we also compare three different fusion operations of probabilistic scores, namely Maximum, Average and Minimum fusion. Experimental results suggest that our method provides promising results. It also shows that Maximum fusion tends to give better performance for most complex events

    AXES at TRECVID 2012: KIS, INS, and MED

    Get PDF
    The AXES project participated in the interactive instance search task (INS), the known-item search task (KIS), and the multimedia event detection task (MED) for TRECVid 2012. As in our TRECVid 2011 system, we used nearly identical search systems and user interfaces for both INS and KIS. Our interactive INS and KIS systems focused this year on using classifiers trained at query time with positive examples collected from external search engines. Participants in our KIS experiments were media professionals from the BBC; our INS experiments were carried out by students and researchers at Dublin City University. We performed comparatively well in both experiments. Our best KIS run found 13 of the 25 topics, and our best INS runs outperformed all other submitted runs in terms of P@100. For MED, the system presented was based on a minimal number of low-level descriptors, which we chose to be as large as computationally feasible. These descriptors are aggregated to produce high-dimensional video-level signatures, which are used to train a set of linear classifiers. Our MED system achieved the second-best score of all submitted runs in the main track, and best score in the ad-hoc track, suggesting that a simple system based on state-of-the-art low-level descriptors can give relatively high performance. This paper describes in detail our KIS, INS, and MED systems and the results and findings of our experiments

    TRECVID 2004 - an overview

    Get PDF
    corecore